

ENVIROMENTAL IMPACT STATEMENT (EIS)

Proposed Cavite-Laguna Expressway (CALAX) Project (Laguna Section)

FINAL REPORT

MAIN TEXT

December 2012

TABLE OF CONTENTS

EXECUTIVE SU	MMARY	i
Background	d and Rationale	i
Project Des	cription	i
Process Do	cumentation of the Conduct of EIA	ii
The EIA Tea	am	iii
EIA Method	ology	iv
The La	and	iv
The W	/ater	iv
The Ai	ir	v
The P	eople	v
Public Parti	cipation	vi
Consu	ultation Meetings	vi
Summary o	f Baseline Characterization	viii
The La	and	viii
	Land Use and Classification	viii
	Geomorphology	ix
	General Geology	ix
	Pedology	xiv
	Terrestrial Biology	xiv
The W	/ater	xvii
	River Systems	xvii
	Water Quality	xvii
The Ai	ir	xviii
	Air Quality	xviii
	Noise Level	xix

The	People			xix
	Socio-	Economic	Survey	xix
	Projec	t Awarene	ess	xxvi
	Social	Acceptab	ility	xxvi
	Inform	al Settlers)	xxvii
Impa	act Iden	tification,	Mitigation and Enhancement	xxvii
PRO	JECT D	ESCRIPT	TION	1-1
1.1	Projec	t Locatio	n and Area	1-1
	1.1.1	Project l	_ocation	1-1
	1.1.2		e for Selection of Primary and	
	4.4.0		ary Impact Areas	
4.0	1.1.3		ndition	
1.2	Projec	t Rationa	lle	1-9
1.3	Projec	ct Alterna	tives	1-11
	1.3.1	Design (Criteria and Standards	1-11
	1.3.2	Review	of the 2006 Feasibility Study	1-12
		1.3.2.1	Proposed Alignment by the 2006 FS	1-12
		1.3.2.2	Objection to the Proposed Alignment by the Land Developers	1-14
		1.3.2.3	Engineering Concept	
	1.3.3	Alignme	nt Study of CALA Expressway (Laguna Section)	1-14
		1.3.3.1	Characteristics of Laguna Section Area	
		1.3.3.2	Procedure of Alignment Study	1-20
		1.3.3.3	Selection of the Beginning Point of Laguna Section (Connection Point of Cavite and Laguna Sections)	1-20
		1.3.3.4	Selection of the End Point at SLEX	1-24
		1.3.3.5	Alternative Alignments and Evaluation	1-33
	1.3.4	Estimate	ed Traffic on Expressway	1-54
		1.3.4.1	Existing Traffic Volume	1-54
		1.3.4.2	Existing Travel Speed	1-55
		1.3.4.3	Toll Rate vs. Revenue	1-55
		1.3.4.4	Estimated Traffic on Expressway	1-58
1.4	Projec	ct Compo	nents	1-61
1.5	Techn	ology Op	tions	1-61

	1.6	Projec	ct Size		1-66
1.7				lan, Description of Project Phases and Timeframes	1-66
		1.7.1		struction Phase	
		1.7.2	Constru	ction Phase	1-68
			1.7.2.1	Construction of Temporary Construction Facilities/Structures	1-69
			1.7.2.2	Relocation of Affected Basic Social Service Utilities	1-69
		1.7.3	Demobil	lization/Decommissioning Phase	1-69
		1.7.4		onal Phase	
	1.8	Manpe	ower Req	uirement	1-70
	1.9	Indica	itive Proje	ect Investment Cost	1-72
2	ANA	LYSIS (OF KEY E	NVIRONMENTAL ASPECTS	2-1
	2.1	The La	and		2-1
		2.1.1	Land Us	e and Classification	2-1
			2.1.1.1	Silang Cavite	2-1
			2.1.1.2	Santa Rosa, Laguna	2-5
			2.1.1.3	Biñan City, Laguna	2-8
		2.1.2	General	Geomorphology and Geology	2-12
			2.1.2.1	Geological Hazard Assessment	2-18
		2.1.3	Pedolog	у	2-31
			2.1.3.1	Alluvial Lowlands	
			2.1.3.2	Hills and Mountains	2-32
			2.1.3.3	Borehole Data	2-32
		2.1.4	Terrestri	ial Biology	2-34
			2.1.4.1	Terrestrial Flora	
			2.1.4.2	Terrestrial Wildlife Fauna	2-48
	2.2	The W	/ater		2-53
		2.2.1	River Sy	/stems	2-53
		2.2.2	Water Q	tuality	2-53
	2.3	The A	ir		2-59
		2.3.1	Meteoro	logy	
			2.3.1.1	Rainfall	2-61

			2.3.1.2	Temperature	2-61
			2.3.1.3	Relative Humidity	2-62
			2.3.1.4	Tropical Cyclones (Typhoons)	
			2.3.1.5	The Wind	2-63
		2.3.2	Air Qual	ity	2-66
			2.3.2.1	Total Suspended Particulates (TSP)	
			2.3.2.2	Gaseous Air Pollutants (SO ₂ &NO ₂	2-67
			2.3.2.3	Air Quality Modeling	2-70
		2.3.3	Noise Le	evel	2-73
			2.3.3.1	Ambient Noise Level	
			2.3.3.2	Noise Level Modeling	
	2.4	The P	eople		2-80
		2.4.1	Socio-E	conomic Survey	2-80
			2.4.1.1	Demography and Basic Information	
		2.4.2	Socio-E	conomic Characteristics	2-88
			2.4.2.1		
		2.4.3	Project /	Awareness	2-115
		2.4.4		cceptability	
		2.4.5		Settlers	
		2.4.6	Farmlan	ds and Livelihood to be Affected	2-120
3	ENV	IRONM	ENTAL/E	COLOGICAL RISK ASSESSMENT	3-1
4	IMP	ACTS M	ANAGEM	IENT PLAN	4-1
	4.1	Enviro	nmental Ir	mpacts, Mitigation, and Enhancement Measures	4-1
5	SOC	CIAL DE	VELOPMI ON EDUC	ENT PLAN (SDP), AND CATION AND COMMUNICATION (IEC)	5-1
	5.1	SDP a	nd IEC Fr	amework Implementation	5-1
		5.1.1	Social D	evelopment Plan	5-1
		5.1.2	Informat	tion and Communication (IEC)	5-1
6	ENV	IRONM	ENTAL M	ONITORING PLAN	6-1
	6.1	Enviro	nmental M	Monitoring Plan (EMOP)	6-1
7	EME	RGENO	Y RESPO	DNSE POLICY AND GENERIC GUIDELINES	7-1

8 INSTITUTIONA	AL PLAN FOR IMPLEMENTATION	8-1
8.1 Institution	nal Plan	8-1
SWORN STAT	EMENTS	
List of Figures		
Figure 1.1.1-1a	Project Area and Location	1-3
Figure 1.1.1-2	Project Site Political Boundary Map	1-4
Figure 1.1.2-1	Direct and Indirect Impact Areas	1-7
Figure 1.1.3-1	Site Condition	1-8
Figure 1.3.2-1	CALA Expressway Alignment Recommended by the 2006 FS	1-13
Figure 1.3.3-1	Land Area Acquired by Private Land Developers	1-16
Figure 1.3.3-2	Road Network in the Study Area	1-17
Figure 1.3.3-3	Schematic Development Condition	1-19
Figure 1.3.3-4	Alternative Alignments of Beginning Point of CALA Expressway Laguna Section	1-21
Figure 1.3.3-5	Existing Interchanges in the Study Area Along SLEX	1-25
Figure 1.3.3-6	Development Condition between Sta. Rosa I/C and Eton/Greenfield I/C	1-28
Figure 1.3.3-7	Examples of Direct Connection_	1-30
Figure 1.3.3-8	Indirect Connection Via Public Road to Existing Interchange	1-32
Figure 1.3.3-9	Alternative Alignments	1-35
Figure 1.3.3-10	Alternative Alignment 1	1-36
Figure 1.3.3-10 (2)	Alignment 2	1-37
Figure 1.3.3-10 (3)	Alignment 2	1-38
Figure 1.3.3-10 (4)	Alignment 2	1-39
Figure 1.3.3-10 (5)	Alignment 2	1-40
Figure 1.3.3-10 (6)	Alignment 2	1-40
Figure 1.3.3-11	Cost Estimate of Alternatives	1-43
Figure 1.3.4-1	Existing Traffic Volume	1-56
Figure 1.3.4-2	Travel Speed of Major Corridors In The South of Metro Manila (After Peak Hours)	

Figure 1.3.4-3	Toll Rate Vs Revenue (CALAX, Year 2011)	
Figure 1.3.4-4	Traffic Projection (Year 2017) of CALAX Laguna Section	
Figure 1.3.4-5	Traffic Projection (Year 2020) of CALAX Laguna Section	
Figure 1.3.4-6	Traffic Projection (Year 2030) of CALAX Laguna Section	1-60
Figure 1.7-1	Implementation Schedule for the Proposed CALA Expressway Project (Tentative)	1-67
Figure 2.1.1-1	Land Use Classification Map of Silang, Cavite	2-2
Figure 2.1.1-2	Land Use Classification and Vegetation Map of Sta. Rosa City, Laguna	2-7
Figure 2.1.1-3	Land Use Classification and Vegetation Map of Biñan City, Laguna	2-9
Figure 2.1.2-1	Summary of the Morpho-Geologic Units along the Project Route Corridor	2-13
Figure 2.1.2-2	Approximate Trace of the West Valle Fault along the Proposed CALA Alignment	
Figure 2.1.2-3	Distributions of Active Fault and Trenches in Luzon	2-20
Figure 2.1.2-4	Earthquake Induced Landslide Hazard Map of Cavite Province	2-22
Figure 2.1.2-5	Earthquake Induced Landslide Hazard Map of Laguna Province	2-23
Figure 2.1.2-6	Rain Induced Landslide Hazard Map of Cavite Province	2-24
Figure 2.1.2-7	Rain Induced Landslide Hazard Map of Laguna Province	2-25
Figure 2.1.2-8	Flood Hazard Map of Cavite Province	2-27
Figure 2.1.2-9	Flood Hazard Map of Laguna Province	2-28
Figure 2.1.2-10	Approximate Distance of Taal Volcano from the Proposed Cavite Laguna (Laguna Section) Expressway Alignment	2-31
Figure 2.1.3-1	Location of Boreholes along the CALA Expressway Alignment	2-33
Figure 2.1.4-1	Birds in the Project Area	2-52
Figure 2.2.2-1	Water Quality Sampling Sites along the Proposed CALA Expressway Alignment	2-55
Figure 2.3.1-1	Climate Map of the Philippines	2-60
Figure 2.3.2-1	Air Quality and Noise Level Sampling Map	2-68
Figure 2.3.3-2	Graph of Measured Pollutants Ground Level Concentrations (GLCs) for the CALA Expressway Project	2-69
Figure 7.1	Emergency Preparedness and Response Team (EPRT) Organization Setup	7-2
Figure 8.1.1	Institutional Plan – Organizational Structure of DPWH	8-3

List of Tables

Table I	Preparer's Field of Expertise and EIA Module Assignment	
Table II	Information Education and Communication (IEC) for all Project Phases of CALAX Expressway	vii
Table III	Summary Impacts Management Plan	xxviii
Table 1.3.1-1	Proposed Geometric Design Criteria for the CALA Expressway	1-11
Table 1.3.3-1	Evaluation of Alternative Alignments at Beginning Point	1-22
Table 1.3.3-2	Existing Interchanges in Project Area Along SLEX	1-24
Table 1.3.3-3	Civil Work Component of Alternatives	1-42
Table 1.3.3-4	Estimated Cost of Alternatives	1-43
Table 1.3.3-5	Traffic Volume Attracted to CALAX (YEAR 2020)	1-44
Table 1.3.3-6	Characteristics of Alternatives	1-45
Table 1.3.3-7	Evaluation of Alternatives: Method-1	1-51
Table 1.3.3-8	Evaluation Criteria: Method-2	1-52
Table 1.3.3-9	Evaluation of Alternatives: Method-2	1-53
Table 1.3.4-1	Traffic Volume And Vehicle Km (CALAX Laguna Section)	1-58
Table 1.5-1	Major Quantities By Contract Package	1-62
Table 1.5-2	Major Material List For CALAX	1-63
Table 1.5-3	Major Equipment To Be Used	1-64
Table 1.6-1	Total Project Size	1-66
Table 1.8-1	Estimated Manpower Requirements for the Proposed CALA Expressway (Laguna Section) Project	1-71
Table 1.9-1	Estimated Project Cost for the CALA Expressway	1-72
Table 2.1.2-1	Summary of Morpho-Geologic Units Along the proposed Cavite-Laguna Expressway (Laguna Section) Project Alignment	2-12
Table 2.1.2-2	Estimates of Peak Ground Acceleration (g) in Average Ground Condition at the Site Due to Earthquake from West Valley Fault	2-17
Table 2.1.2-3	Estimate of Peak Ground Acceleration (g) in Average Rock Condition at the Site Due to Earthquakes from West Valley Fault	2-18
Table 2.1.2-4	Hazard Related to Volcanic Activity and Possible Effect to the Project Site	2-30
Table 2.1.3-1	Soil Characteristic in the Study Area	2-31
Table 2.1.4-1	List of Secondary Forest Plant Species Found in the Study Area	2-36
Table 2.1.4-2	List of Shrub, Herb, Grass, and Sedge Species Indentified in the Study Area	
Table 2.1.4-3	List of Bearing Trees Identified in the Study Area	2-42

Table 2.1.4-4	List of Ornamental Plants Species Identified in the Study Area	2-45
Table 2.1.4-5	List of Ornamental Trees Observed in the Study Area	
Table 2.1.4-6	List of Bird Species Encountered in the Study Area	2-51
Table 2.2.2-1	Physico-Chemical Properties of Selected Waterways Along the Proposed CALA Expressway	2-56
Table 2.3.1-1a	Climatological Normal Values	2-64
Table 2.3.1-1b	Normal Values	2-65
Table 2.3.2-1	Baseline Air Quality Sampling for the CALA Expressway	2-66
Table 2.3.3-1	Observed Ambient Noise Level at the Selected Sampling Sites Along the Proposed CALA Expressway Alignment	2-75
Table 2.4.1-1	Household Population of PAPs Interviewed	2-81
Table 2.4.1-2	Households Structure of PAPs Interviewed	2-82
Table 2.4.1-3	Ethno Linguistic Affiliation of the Respondents	
Table 2.4.1-4	Educational Attainment of Male	2-84
Table 2.4.1-5	Educational Attainment of Female	2-86
Table 2.4.1-6	Education of Children	2-87
Table 2.4.2-1	Primary Occupation of PAPs	2-88
Table 2.4.2-2	Secondary Occupation of PAPs	2-90
Table 2.4.2-3	Monthly Family Income	2-91
Table 2.4.2-4	Average Annual Household Expenditures of Respondent PAPs	2-93
Table 2.4.2-5a	Land Tenure Status of Impacted Structures	2-95
Table 2.4.2-5b	Land Tenure Status of Impacted Farm Lands	2-96
Table 2.4.2-6	Ownership of Residential Structures	2-96
Table 2.4.2-7a	Source of Water for Washing Clothes and Dishes	2-97
Table 2.4.2-7b	Source of Water Supply for Drinking	2-99
Table 2.4.2-8	Use of River for Washing Clothes	2-100
Table 2.4.2-9	Use of River for Laundry Business	2-101
Table 2.4.2-10	Use of River for Bathing	2-102
Table 2.4.2-11	Use of River for Fishing	2-103
Table 2.4.2-12	Nearest Health Facilities in the Community	2-105
Table 2.4.2-13	Means of Transportation Going to Health Facilities	2-106
Table 2.4.2-14a	Nearest Available Educational Facilities in the Community	2-107
Table 2.4.2-14b	Means of Transportation Going to Educational Facilities	2-109
Table 2.4.2-15a	Type of Toilet Facilities of PAPs Interviewed	2-110
Table 2.4.2-15b	Location of Toilet Facilities of PAPs Interviewed	2-111
Table 2.4.2-16	Solid Disposal	2-112
Table 2.4.2-17	Mode of Transportation in the Area	2-113

Table 2.4.3-1	Knowledge About CALA Expressway Project	2-115
Table 2.4.3-2	Source of Information	2-117
Table 2.4.4-1	Social Acceptability of the Respondents	2-119
Table 3.2.2-1	Physico-Chemical Properties of Selected Waterways Along the Proposed CALA Expressway	3-61
Table 4.1-1	Impacts Management Plan	4-9
Table 5.1.2-1	Meetings Conducted for the Proposed CALA Expressway Project (Laguna Section)	5-3
Table 5.1.2-2	Other Coordination Meetings in Relationto the Proposed CALA Expressway Project (Laguna Section)	5-6
Table 5.1.2-3	Summary of Issues and Concerns Raised during IEC	5-8
Table 6.1-1	Environmental Monitoring Plan	6-2

Abbreviations

Aps Affected Persons

ASSHTO American Association of State Highway and Transportation Officials

BOD Biological Oxygen Demand

CALA Cavite-Laguna

CALAX Cavite-Laguna Expressway

CALABARZON Cavite Laguna Batangas Rizal Quezon

CAO City Assessor's Office

CAVITEX Manila-Cavite Expressway

CHED Commission on Higher Education
CIGI Common Image Generator Interface

CPDC City Planning and Development Coordinator

CRIC City RAP Implementation Committees

DAO Department Administrative Order

DAR Department of Agrarian Reform

DBE Design Basis Earthquake

DED Detailed Engineering Design

DENR Department of Environment and Natural Resource

DENR-EQD Department of Environmental and Natural Resources-Environmental Quality

Division

DENR-FMB Department of Environment and Natural Resources

Forest Management Bureau

DIA Direct Impact Area
DO Department Order

DPWH Department of Public Works and Highways

ECC Environmental Compliance Certificate

EIA Environment Impact Assessment

EIARC Environmental Impact Assessment Review Committee

EIS Environmental Impact Study

EMB Environmental Management Bureau

EMP Environmental Management Plan

EMOP Environmental Monitoring Plan

EO Executive Order

EPRT Emergency Preparedness and Rescue Team

EQD Environmental Quality Division

ESE East South East

ESH Environmental Safety and Health

ESHO Environment and Safety Health Officer

EVF East Valley Fault
EVZ East Valley Zone

FCIE First Cavite Industrial Estate
GDP Gross Domestic Product
GMA General Mariano Alvarez
GMA Greater Manila Area

GOP Government of the Philippines

Ha Hectare

IC Interchange

IEC Information Education and Communication

IIA Indirect Impact Areas

IMP Impact Management Plan

IUCN International Union for Conservation of Nature

JICA Japan International Cooperation Agency

LARRIP Land Acquisition Resettlement and Rehabilitation Indigenous People

LC Least Concern

LGU Local Government Unit

LLDA Laguna Lake Development Authority

MAO Municipal Assessor's Office

MARO Municipal Agrarian Reform Office
MCE Maximum Considered Earthquake

MERALCO Manila Electric Company

MGB Mines and Geosciences Bureau

MMDA Metro Manila Development Authority

MMT Multipartite Monitoring Team

MMUTIS Metro Manila Urban Transportation Integration Study

MOA Memorandum of Agreement

MPDC Municipal Planning and Development Coordinator

MRIC Municipal RAP Implementation Committees

NAAQS National Ambient Air Quality Standards

NCR National Capital Region

NE North East

NGO Non-Government Organization

NHCP National Historical Commission of the Philippines

NHI National Historical Institute
NIA National Irrigation Authority
NHA National Housing Authority

NIPAS National Integrated Protected Areas System

NO₂ Nitrogen Dioxide

NPCC National Pollution Control Commission

NSCB National Statistics Coordination Board

PAGASA Philippine Atmospheric Geophysical and Astronomical

Services Administrations

PAO Provincial Agriculturist Office
PAPs Project Affected Persons

PAR Philippine Area of Responsibility
PARO Provincial Agrarian Reform Office

PCM Public Consultation Meeting

PFZ Philippine Fault Zone

PHIVOLCS Philippine Institute of Volcanology and Seismology
PMO-BOT Project Management Office-Build Operate Transfer

PMS Periodic Service Maintenance

PPFP Provincial Physical Framework Plan

PSHA Probabilistic Seismic Hazard Assessment

RA Republic Act

RAP Resettlement Action Plan

ROW Right-of-Way

SAFDZ Strategic Agriculture and Fisheries Development Zones

SAMACA Samahang mga Magbubukid sa Carmen

SDP Social Development Plan
SLEX South Luzon Expressway

SO₂ Sulfur Dioxide

STD Sexually Transmitted Disease

TMP Traffic Management Plan
TSP Total Suspended Particles
TSS Total Suspended Solid

UPLB University of the Philippines Los Baños

WB World Bank

WBOP World Bank Operational Procedure

WVF West Valley Fault

EXECUTIVE SUMMARY

BACKGROUND AND RATIONALE

Previous studies on the Cavite-Laguna Expressway (CALAX) Project date back in 1996 when the Japan International Cooperation Agency (JICA) conducted the Metro Manila Urban Transportation Integration Study (MMUTIS) and completed in 1999. This study was followed by the CALA Transport Strategy and Short-Term Programs and Policies which was a component of the Cavite-Laguna (CALA) Urban Development and Environmental Management Project of the World Bank (WB) on the same year 1999 the MMUTIS was completed.

The JICA-assisted Feasibility Study and Implementation Support on CALA East-West National Road Project (the 2006 FS) was conducted 2006 on the basis of the above-mentioned studies. In said FS, the CALAX Alignment was proposed. The project was temporarily shelved when private developers in the area disagreed on the alignment.

In 2010, the JICA-assisted High Standard and Highway Network Development Master Plan (2010) and Preparatory Survey for PPP Infrastructure Development Project (2010) recommended CALAX as a **high priority PPP project**. With the completion and operation of the Manila-Cavite Expressway (CAVITEX) in 2011 the implementation of the CALA Expressway Project was again deemed necessary and justified.

PROJECT DESCRIPTION

The CALA Expressway Project will connect the Manila-Cavite Expressway in the north, through the Provinces of Cavite and Laguna to join with Aguinaldo Highway at Silang, Cavite and then eastward to connect with South Luzon Expressway (SLEX), which will provide onward access to Batangas Port. The proposed alignment encompasses the Municipality of **Silang**, in Cavite, and the Cities of **Santa Rosa** and **Biñan** in the Province of Laguna.

Silang is a "landlocked" 1st Class municipality situated on the eastern part of Cavite Province. The town is geographically located at **N14°14′0″**, **E120°59′0″**, and is approximately **45 kilometers** south of Manila. From its starting point along E. Aguinaldo Highway, the alignment will cross a total of **five** (**5**) barangays. These are: Brgy. Sabutan, Kaong, Tibig, Munting Ilog, Puting Kahoy, Inchican, and Carmen.

Tagged as the "Lion City of the South", since 1994, Santa Rosa City lies approximately **38 kilometers** south of Manila via the South Luzon Expressway, making it a suburban residential community of Metro Manila. Geographically, the City is located at **N14°16′43″**, **E121°5′48**".

Located at geographical coordinates **N14 20'0"**, **E121°5'0"**, Biñan is a "first class component city" in the Philippines. It is one of the **three** (3) cities comprising the 1st Congressional District of the Province of Laguna (the Cities of San Pedro and Santa Rosa are the others). The City of Biñan is situated about **34 kilometers** south of Manila. The alignment will traverse a total of **four** (4) barangays in Biñan City namely Biñan, Loma, Malamig, and Timbao.

PROCESS DOCUMENTATION OF THE CONDUCT OF EIA

Primary and secondary information were utilized in the preparation of this EIA Report. The baseline information required in the preparation of this report are established through series of field investigations and ocular inspections. Dissemination of project information was primarily done through conduct of consultation meetings with the affected people, and concerned government agencies and entities.

Secondary data were obtained from various government agencies such as the following offices from the respective LGUs---Cavite and Laguna (Provincial level); and Silang, Biñan, and Sta. Rosa (City/Municipal level):

- Provincial/City/Municipal Planning and Development Office;
- Provincial/City/Municipal Assessor's Office;
- Provincial/City/Municipal Agriculturist Office; and
- Provincial/City/Municipal Agrarian Reform Office

THE EIA TEAM

ECOSYSCORP, Inc. is a private Environmental Consulting Firm that specializes in conduct and preparation of environmental researches, Resettlement Action Plan (RAP), and related environmental studies. The company has been involved in numerous private and government infrastructure projects since its incorporation in 1994. *Team Leader* Ms. Annabelle N. Herrera and experts specializing in various fields of environmental disciplines compose the EIA Team.

Table I briefly describes the Preparers' field of expertise and the EIA module assigned to each expert.

Table I Preparers' Field of Expertise and EIA Module Assignment				
Preparers	Field of Expertise	EIA Module Assignment		
	Team Leader, Environmental, Socio-Economic, and RAP Specialist	Socio-Economic		
	Quaternary Geologist	Geology and Geomorphology		
	Air Quality Specialist	Air Sampling, and Noise Monitoring and Modelling		
	Mining Engineer, Environmental and RAP Team Member	Socio-Economic Interviews and Survey		
	RAP Team Member	Socio-Economic Interviews and Survey		

EIA METHODOLOGY

The Land

Classification of the vegetation cover in the study area is primarily based on field survey undertaken in the areas covered by the proposed CALA Expressway alignment in the Municipality of Silang, Cavite, and the Cities of Santa Rosa and Biñan, Laguna.

Identification of the encountered flora species was done through Gross Morphology. It is a type of plant identification wherein the external features of both vegetative and reproductive features of the species are heavily relied upon, since they are easily observable. The species identified are validated using field guidebooks on Philippine Flora and the "Pictorial Cyclopedia of Philippine Ornamental Plants, 1995", a guidebook compiled by Domingo A. Madulid and Bookmark Inc.

The bird (avifauna) species in the project area were identified through actual sightings of the birds species commonly found in highly disturbed habitats. The species encountered were recorded and then verified using the photographed compilation of the "Philippine Birds" authored by John Eleuthere DuPont. Local accounts were also used.

The Water

Water samples were taken from **three** (3) selected rivers crossed by the alignment to establish the physico- chemical properties of the waterways that may be affected by the project. Sta. 1, Malaking Ilog River is located in Brgy. Sabutan, Silang, Cavite. Sampling Sta. 2, Lumbia River is located in Santo Domingo, Santa Rosa City, Laguna, and the sampling station, Sta. 3 Malindig River, is located under the bridge along Laguna Blvd.

Water samples were obtained using a 1-liter sterilized mineral water bottle. Standard water sample preparation procedure was followed. The sample bottles were properly labeled; the caps were securely sealed with scotch tape, and placed in a chest filled with ice to preserve the samples. The samples were later brought to the laboratory for analysis.

Field measurements of pH and temperature were also undertaken. A 400 ml sterilized beaker was filled with samples from the River. Using a portable pH and a laboratory thermometer, on-site measurements were taken. The pH meter was properly calibrated prior to use.

The Air

Ambient air quality sampling in the study area was conducted at **six** (**6**) selected sites to establish the existing level of air pollutants that may be influenced by the proposed CALA Expressway project. Sites chosen are those adjacent to air pollution sensitive receptor areas. Sampling was undertaken twice in a day to determine the pollutant levels during the morning and afternoon period. The sampling was done in conformity with the National Ambient Air Quality Standards (NAAQS) of the Department of Environment and Natural Resources (DENR).

The methods of analyses of air samples are Pararosaniline Method for SO2 and Griess Saltzman Method for NO2. This method done is by bubbling the ambient air through an absorbing solution in the glass impingers using the AirChek Gas Sampler. For total suspended particulates (TSP), gravimetric method is adopted using a Staplex high-volume sampler with a filter paper that is weigh prior to and after sampling.

Noise Level

Noise level monitoring was done simultaneously with air quality sampling at the same sites. Noise level monitoring was conducted in accordance with the standard monitoring periods specified by guidelines of the Environmental Quality Division (EQD) of the DENR-EMB. Averaging of the noise frequencies received by the portable noise meter within a **10-minute** period was done. The noise meter was properly calibrated prior to sampling.

The People

Socioeconomic survey of project-affected persons was conducted from February 22, 2012 to March 14, 2012. **Four (4)** types of PAPs were interviewed, namely:

- **Type A** Residential Structure Owner;
- **Type B** those whose farm land would be affected (landowner/tenant and free occupation of land with permit)
- **Type C** is for Secondary Impact Areas (i.e. youth sector, aged sector, business sector, transport group, residential, women's and NGO/POs); and
- **Type D** for Big Land Developers & Real Estate Companies (the team had a hard time in interviewing Type D respondents due to company protocol).

Included in the survey are questions that will establish basic demographic data and affected persons' socio-economic status. Socio-economic indicators used consist of:

- (i) primary and secondary source of income;
- (ii) household income and expenditures;
- (iii) type of ownership of structure occupied; and
- (iv) type or lighting, water supply, sanitation, solid waste management, and transportation

PUBLIC PARTICIPATION

Consultation Meetings

A total of **14 IEC meetings** were conducted. **Five** (**5**) of these are with the LGUs--- two (**2**), at the provincial and **three** (**3**) city/municipal level; **eight** (**8**) barangay/PAPs-level and **one** (**1**) with the officers of SAMACA Farmer's Organization in Brgy. Carmen. Aside from IEC meetings, the Consultant visited the Office of Provincial Assessor of Cavite and Laguna, Municipal Assessor of Silang, City Assessors of Biñan and Sta. Rosa as part of RAP preparation. The project was also presented to the different department and offices of the Local Government Units such as Treasurer's Offices, Provincial Agrarian Reform Office (PARO), National Irrigation Authority (NIA), National Historical Commission of the Philippines (NHCP, formerly NHI), and Department of Agrarian Reform (DAR).

Table II presents the Information Communication Education (IEC) for all project phases of CALA Expressway.

Table II Information Education and Communication (IEC) for All Project Phases of CALA Expressway				
Stakeholder/Sectors	Major Topics of Concern	IEC Scheme/Strategy	Information Medium	Indicative Timeline/Frequency
PRE-CONSTRUCTION AND CONSTRUCTION	N PHASES			
 Provincial LGUs of CAVITE and LAGUNA; Municipal LGU of SILANG; City LGUs of BIÑAN and STA. ROSA; Barangay Officials, Farmer's Association, Senior Citizen's Association, Landowners, Homeowner's Association, Women's group of Sabutan, Kaong, Tibig, and Carmen, SILANG; Barangay Officials, Farmer's Association, Senior Citizen's Association, Landowners, Homeowner's Association, Women's group of Biñan, Malamig, Timbao, and Loma of BIÑAN; and Barangay Officials of Barangays Sto. Domingo and Don Jose, Senior Citizens Association, Women's Organization, Youth Organization, Farmers Organization and 	Present Project Description, including alternative alignments study; Present EIA Scoping Matrix Present RAP Process	Group Meeting Focus group discussion	Invitation letters Audio visual presentations Hand outs Comics (English and Tagalog versions)	During conduct of EIA and RAP Preparation February 2012
Transport Group of Don Jose, STA. ROSA				
All stakeholders	Post ECC Billboard to announce ECC issuance	Visual; Billboard	Billboard	Prior to start of construction activities
All stakeholders	Construction safety signs, rerouting signs	Visual; Signages must be installed 200m, 100m, and 50 m before location of construction site	Road signs	Immediately before start of construction activity
OPERATION PHASE				
Motorists	Road safety signs (e.g., speed limit, slippery when wet, etc)	Every 500 m to 1 km	Road signs	During operation phase

SUMMARY OF BASELINE CHARACTERIZATION

The Land

Land Use and Classification

In Silang, the proposed CALA Expressway alignment will generally traverse agricultural areas. However actual survey conducted revealed that most of these areas are **unproductive agricultural lands** which appear to have transformed into **open grassland land/wasteland** due to unavailability of irrigation system. Patches of marginal pineapple plantations and corn fields are observed in Brgy. Sabutan and Tibig. Farther down southeast, the alignment will traverse through some coffee, banana, and coconut plantations in Brgy. Tibig.

The alignment will also cut across some **residential properties** of Stateland in Brgy. Sabutan, and Extra Ordinary in Brgy. Carmen. On the southeast, it will also pass along prime residential areas such as the Ayala West Grove Heights and South Forbes in Brgy. Inchican. From Brgy. Carmen, Silang Cavite, the alignment will enter Sta. Rosa City through Brgy. Don Jose. The alignment will connect to the existing Nuvali Spine Road and will pass by the **residential developments** of Sta. Rosa Village on the northeast and the Sta. Rosa Estates on the southeast. To the east of the proposed alignment is the Laguna Techno Park, Sta. Rosa City side.

The alignment from the Nuvali Spine Road in Brgy. Don Jose, Santa Rosa City, will then follow the existing Laguna Boulevard in Brgy. Biñan, Biñan City, passing by the Laguna Techno Park on the east, and Sta. Rosa Village and San Jose Village on the west. As the alignment continues to follow the existing road towards northeast, it will pass by Southville in Brgy. Malamig before cutting across the Tamayo Property in Brgy. Timbao. It will then follow the existing Nuvali passing by the Verdana Homes on the northwest and Celina Homes on the east. Towards its terminus, the alignment immediately after Celina Homes will pass along the Greenfields Property at Km 16+150. The proposed CALA Expressway will eventually cut across the Greenfields Property approximately at Km 16+950 and will continue to traverse the said property until it reaches its end section at Km 18+010 in Brgy. Mamplasan.

Geomorphology

The general morphology of the project area can be described as generally flat on the eastern portions (Sta. Rosa and Biñan), gradually shifts to rolling terrain as it approaches the western side, until it attains an average slope of 18% as it reaches Silang on the west side of the alignment. There are four (4) distinct geomorphic units namely from the east: (i) Lake Coastline, (ii) Alluvial Plain, (iii) Degradation Zone, and (iv) Volcanic Foot Slope. The corresponding morpho-geologic units consist of: (i) Recent sediments underlying the lake coastline, (ii) Pliocene-Pleistocene pyroclastic deposits underlying the alluvial plains, (iii) Pliocene-Pleistocene pyroclastic deposits underlying the degradation zone, and (iv) Pliocene-Pleistocene pyroclastic deposits underlying the volcanic foot slope.

General Geology

Earthquakes in the region around the project site are influenced by the tectonic features such as the Manila Trench, East Luzon Trench, Philippine Fault Zone, and the West Valley Fault System. Most of the earthquakes plotted in the map belong to **four** (4) clusters, one along the eastern shores of Luzon, around Polilio Island, one on the eastern coast of Samar; another cluster exists on the western coast of Luzon around Mount Pinatubo and the south of Taal Volcano, along the northern shore of Mindoro. Seismicity in these four clusters is influenced mostly by the subduction processes in these sites, as modified by the local volcanic and tectonic structures. The other earthquakes plotted in the map that are not related to the four clusters are generated by the major faults that cut the Philippine archipelago.

Seismicity along the East Luzon Trench is characterized by a sequence of high magnitude earthquakes (larger than **5.5**) and their time sequence and spatial distribution link them to the apparent stress partitioning from the Philippine Trench to the faults in northern Luzon. The earthquakes in this area are interpreted to be caused mainly by the convergence between the Benham Plateau and Luzon.

Geological Hazards

The West Valley Fault System

The proposed Cavite-Laguna Expressway alignment intersects the WVF in the vicinity of Ayala West Grove/South Forbes, approximately between **Km 8+000–8+500** in Brgy. Carmen, Silang, Cavite. This road section cuts on a very gentle slope along the west flank of the Tagaytay Volcanic Slope.

Deeply incised gullies with near vertical walls runs easterly on the northern margin of the Ayala West Grove and South Forbes and at the southern margin of the Extra Ordinary. At the point of intersection, the road runs along the 4-lane well paved, Tagaytay-Sta Rosa Road, constructed in the late 1990's with a very gentle gradient and design speed of approximately **80 kph**. No slope cut exists in the road section thus, no rock fall, land slide and other adverse effect due to slope instability can be expected.

In the event of fault movement, fault rupture is possible resulting to displacement. For Marikina Fault, displacement varies, depending on the site. In the area of Tunasan, Muntinlupa City, displacement of about 1 meter lateral and 0.5 meters vertical.

Based on the study by MMDA-JICA-PHIVOLCS the West Valley Fault can possibly generate a magnitude **7.2** earthquake. By deterministic approach using the Fukushima Tanaka Equation, the estimated Peak Ground Acceleration (PGA) ratio to be experienced by the structures of the project road such as but not limited to the bridges and interchanges, at a given distance. Please refer to Chapter 2, Section 2.1.2 for further details.

The PGA estimate used the possible earthquake magnitude of **6.8**, **7.2**, and **7.4** for a given fault length of **30 km**, **67 km**, and **96 km**, respectively, as estimated by *Bautista* et al (2000). In addition, the possible maximum earthquake magnitude of M7.7 based on horizontal and vertical displacement measurements along the fault line done by *R.E. Rimando* and *P.L.K. Knuepfer* (Feb. 2004) were also used. The

estimated magnitudes and fault length of Bautista and Rimando is summarized as follows:

Assumed Fault Length	Possible Magnitude
Length = 30 km	6.8
Length = 67 km	7.2
Length = 96 km	7.4
(Based on Rimando et al (2004)	7.7

The computation shows that the ground acceleration level decreases as the distance of the project site from the possible hypocenter increases.

Liquefaction Vulnerability

Liquefaction is not considered as hazard along the project alignment since the under laying bedrock are compacted and well consolidated volcanic ejectas. Loose, water saturated sediments susceptible to liquefaction are confined along the coastline of Laguna de Bay and Manila Bay, a far distance from the alignment.

Earthquake-Induced Landslides

As can be discerned from the earthquake-induced landslides hazard maps of Cavite and Laguna Provinces provided as Figures 2.1.2-4 and 2.1.2-5, respectively, in Chapter 2, the proposed CALA Expressway alignment is not **susceptible to such hazard**. Landsides due to earthquake if ever it will occur will be confined on gully walls and possibly at the escarpment at the eastern margin of the volcanic slope. The alignment will not pass along escarpments. Gullies if crossed will be through bridges with engineered abutments founded into the gully floor or imbedded into the gully walls.

Rain-Induced Landslides

Map prepared under the Ready Project shows the road section in Cavite will be on an area with low susceptibility to rain induced landslide while the section in Laguna runs on a terrain not susceptible to rain induced landslide.

The project will have a **low risk to rain induced land slide** due to the following:

- The alignment will run through a gently sloping terrain;
- No slope cut will be made along the alignment;
- Rain induced land slide if ever it will occur will be confined on unstable section of walls of gullies; and
- Bridge crossing will have properly designed abutments founded into the gully floor or imbedded into the gully walls

For details please refer to **Figures 2.1.2-6** and **2.1.2-7** in **Chapter 2**, which present the rain-induced hazard maps for the Provinces of Cavite and Laguna, respectively.

Flooding

The <u>road alignment has a low susceptibility to flooding</u> due to the following terrain considerations:

- 1. Elevation is relatively high about **140 meters** at the Aguinaldo Highway to about **20 meters** above sea level in SLEX. This elevation allows storm water to immediately flow towards Laguna de Bay in Laguna and Manila Bay in Cavite;
- 2. The alignment crosses a number of deep gullies which acts as a discharge points for engineered drainage lines. These gullies are relatively deep and flows towards the receiving bodies of water (e.g. Laguna de Bay etc);
- 3. Both sides of the proposed road alignment are developed subdivisions with engineered drainage systems;
- 4. The developed sections of the alignment already have engineered drainage lines. Flooding at the site can be avoided through:

- Biñan, Carmona, Sta Rosa, and the adjacent cities and municipalities need to have an integrated drainage system;
- Dumping of garbage on natural water ways must be avoided;
- Natural water ways must be kept free of informal settlers;
- Engineered drainage lines both on private and public properties / development have to be regularly cleaned and properly maintained; and
- Flood alleviation is a community effort and solutions cannot be through recommendations best by application
- 5. Topographic map and cross section of the road project to indicate the areas of localized flooding cannot be used since these maps are confined within the road alignment. Further, the adjacent areas of the proposed road alignment had already been developed into subdivisions and industrial parks which are private properties with their own drainage system; and
- 6. Flash flood cannot be mitigated since the flood water will be coming from the surrounding catchment area where the project has no control or influence. What can be mitigated is the duration of inundation due to flash flood by providing sufficient and adequate drainage system both (e.g. cross drain and storm drain) to hasten for flood water to subside.

The flood hazard maps for the Provinces of Cavite and Laguna are given as **Figures 2.1.2-8** and **2.1.2-8**, respectively (See Chapter 2).

Volcanic Activity (Taal Volcano)

Given the approximate distance of the project site from Taal Volcano, ash fall is the most likely volcano related hazard that might affect the project site. The level on impact however may be low and dictated by the following:

- Type of eruption;
- the volume of extruded volcanic materials (a function of the type of eruption);
- Height of eruption/ash cloud; and
- Direction of the prevailing wind during the eruption period (more likely if the prevailing wind is the southwest monsoon

Volcanic ash is pulverized rock to silt and sand size particles by the volcanic activity. This are ejected material, which initially form an eruption column that rise several miles above a volcano. Height of eruption column depends on the type of eruption. The column eventually spread to form a cloud high into the atmosphere. It eventually spread with the plume direction influenced by the prevailing wind direction. For details please refer to **Chapter 2**, **Section 2.1.2**, **Table 2.1.2-4** and **Figure 2.1.2-10**.

Pedology

Based on bore hole data along the alignment, the type of soil encountered corresponds to soil materials that are characteristic of **coastal landscapes** and **alluvial plains**, being slightly to highly plastic, due to considerable amount of clay materials. In this report, these are referred to as **Layer A**. **Layer B** is characterized as grayish brown/gray silty sand with little amount of tuff materials, and **Layer C**, which are non-plastic sandy silts are characteristic of soils found in **hilly and mountainous landscapes**.

Terrestrial Biology

Flora

The vegetation cover along the areas traversed by the proposed CALA Expressway alignment can be classified into **two** (2) major types, the **Natural Vegetation**, and the **Cultivated Vegetation**. The Natural Type primarily consists of Secondary Growth and Lowland Grassland, while the Cultivated Type on the other hand is subdivided into Agricultural and Built-Up.

There is **no primary forest growth observed**. The sparsely vegetated landscape serves as a reminder of the past human activities that have dictated the formation of a distinct flora community. Regenerations of tree species typical of a *secondary forest* are very evident along gullies and edges of rivers and creeks. It is important to note that **endangered and/or rare flora species were not encountered in the study area**.

"Kaingin" or slash and burn farming is the oldest method of agricultural practice known to man since the early years of the 20th century. Undeniably, it has greatly influenced the formation of vegetative cover not only in the study area, but in the entire country as well. Due to the enormity of the converted forest areas, farmers are unable to till every corner of the expanse, which leads to the evolution of another vegetation community, called the *Lowland Grassland*. Similar to other grassland, vegetation growth in the study area is dictated mainly by two (2) grass species - Saccharum spontaneum (talahib) and Imperata cylindrica (cogon). Although *I. cylindrica* is the more aggressive species of the two, grassland areas traversed by the alignment are dominated by the much taller and coarser S. spontaneum.

Among the affected areas, Silang, Cavite represents the biggest agricultural The town is famous for producing the very sweet medium-sized expanse. pineapple and the best tasting robusta coffee in the whole Province of Cavite. Yellow and green corn varieties are extensively cultivated in Silang, while palay is planted merely in upland areas due to unavailability of irrigated farmlands. Yellow corn variety is the main raw material for animal feeds.

Commercial fruit trees such as papaya, mango, banana, lanzones, jackfruit, rambutan, and coconut are widely grown in the study area. Root crops such as kamote/sweet potato, cassava, potato, and peanut are also cultivated in Silang. Vegetables grown include okra, lettuce, eggplant, tomato, and black pepper.

Cutflowers and ornamentals are generally grown throughout Silang aside from agricultural produce. Anthurium and orchids are the main cut flowers propagated.

Fauna (Avifauna)

The study area is typical of a disturbed wildlife habitat. Forest areas that will provide habitat to fauna species no longer exist. Species diversity of the remaining vegetation covers which are commonly converged on ravines and edges of rivers and creeks or in scattered patches is poor.

This being the case, comprehensive study on the existing terrestrial fauna was not undertaken. Instead, documentation of the wildlife fauna was based primarily on actual sightings, focusing mainly on avifauna (birds), since this is the only fauna group most likely to be affected by the project. Species encountered were identified and validated using descriptive and photographic handbook guide on Philippine birds.

Significantly, all the encountered bird species according to IUCN classification belong to the **Least Concerned** (**LC**) category which means, that these *extant* species or lower taxa which have been evaluated but do not qualify for any other category. As such, they do not qualify as **Threatened**, **Near-Threatened**, or **Conservation Dependent** (prior to 2001).

Almost all of the species identified are birds ordinarily found in urban, agricultural, and grassland areas, the most common of which is the Eurasian tree sparrow (*Passer montanus*), a species which is believed to have been introduced to the country from China during the 1930s. Associated species with *P. montanus* that are common in the study area include yellow-vented bulbul (*Pycnonotus goiavier*), long-tailed shrike (*Lanius schach*), glossy swiftlet (*Collocalia esculenta*), and pied fantail (*Rhipidura javanica*). Sighting of olive-backed sunbird (*Cinnyris jugularis*), crested myna (*Acridotheres cristatellus*), white-collared kingfisher (*Halcyon chloris*), black-naped oriole (*Oriolus chinensis*), large-billed crow (*Corvus macrorhychos*) were likewise documented. Local accounts also revealed presence of **two** (2) owl species -- the Philippine endemic scops owl (*Otus megalotis*) and grass owl (*Tyto longimembris*).

Although it was not established if significant bird activities such as mating, roosting, and nesting are performed in the study area, obviously, the existing flora species do not offer sufficient enough food value to the birds keeping the diversity range at the minimum. Consequently, bird species from nearby protected forest areas like the Mt. Makiling Forest Reserve is not expected to migrate in the study area.

It is important to note that during the field survey, there are no threatened, endangered, and/or vulnerable species encountered.

The Water

River Systems

There are three (3) main river systems draining the area traversed by the alignment. These are the: (i) *Malaking Ilog River*, (ii) *Lumbia River*, and (iii) *Malindig River*. Malaking Ilog is an almost N-S trending, steeply incised river with upstream portions draining the Tagaytay highlands, into the downstream catchment areas in GMA, Cavite. Lumbia and Malindig are being fed by numerous tributaries, and drains the hilly areas of Silang from the southwest, into the lowland areas of Sta. Rosa and Biñan, on the northeast.

Water Quality

Baseline water quality sampling was undertaken at **three** (3) selected rivers crossed by the proposed CALA Expressway alignment to establish the physico- chemical properties of the waterways that may be affected by the project.

Laboratory results showed that the detected Total Coliform content from **all water samples exceeded** the DENR Standard of **5,000 MPN/100 ml**. Possible sources of coliform bacteria include agricultural run-off, effluent from septic systems sewage discharge, and infiltration of domestic animal fecal matter.

Although all water samples contain lead, the value detected is less than 0.01 mg/L, and is well within standard limit of DENR. Dissolved oxygen (DO) levels are within the required DENR Standard of not less than 5.0 mg/L. The other parameters, namely Total Suspended Solids (TSS), 5-day day BOD range, are also well within DENR Standards for Class C fresh waters.

In terms of physical properties, the rivers are clear and water is freely flowing. The pH level range is between **6.9-8.0**, which is within the desirable limit to provide protection for the life of freshwater fish and bottom dwelling invertebrates.

The Air

Air Quality

Ambient air quality sampling in the study area was conducted at **six** (**6**) selected sites to establish the existing level of air pollutants that may be influenced by the proposed CALA Expressway project. The sites chosen are those adjacent to air pollution sensitive receptor areas. Sampling was undertaken twice in a day to determine the pollutant levels during the morning and afternoon period. The sampling was done in conformity with the National Ambient Air Quality Standards (NAAQS) of the Department of Environment and Natural Resources (DENR).

Total Suspended Particulates (TSP)

Result of the monitoring undertaken at all sampling stations showed that the existing TSP levels both in the morning and in the afternoon are **well within the DENR Standard** for a 1 hour sampling period (300 μ g/Ncm). The average TSP level observed at the sampling sites ranged from 20 μ g/Ncm to 147 μ g/Ncm. The lowest TSP level observed is 20 μ g/Ncm, which was obtained during the morning sampling.

Gaseous Pollutants (SO₂ and NO₂)

The SO_2 levels observed in all the sampling sites do not exceed the required standard of the DENR (340 μ g/Ncm) for a 1 hour sampling period. The recorded concentration levels ranged between 19 μ g/Ncm to 31 μ g/Ncm are way below the permissible limit.

Similarly, the measured NO₂ concentration levels at the six (6) sampling stations are also well within the 1 hour period of the DENR standard (260 μ g/Ncm). The concentration level range is between 3 μ g/Ncm to 11 μ g/Ncm.

Noise Level

Monitoring of the ambient noise level along the noise sensitive receptor areas traversed by the proposed CALA Expressway alignment was concurrently undertaken with the air quality sampling. Both monitoring activities were conducted at the same sampling sites

Generally the recorded average noise levels at the sampling sites established along the proposed alignment are **typical for an urban area** due to the relatively significant traffic volume. The highest noise levels for all monitoring time periods were recorded at Sta. 2, exceeding the DENR standards for both categories. This can be attributed primarily to the significant traffic volume plying the E. Aguinaldo Highway.

The nighttime noise level recorded ranges between **49.6-60.0 dBA**. It can in also be discerned that the **daytime noise levels are within the permissible limits**. The average evening time noise level observed at Sta. 2 (**59.4 dBA**), Sta. 3 (**54.9 dBA**), and Sta. 6 (**55.6 dBA**), are within the DENR standards of **60 dBA** and **65 dBA** for Class B and Class C categories, respectively.

The People

Socio-Economic Survey

Socioeconomic survey of project-affected persons was conducted from February 22, 2012 to March 14, 2012. **Four (4)** types of PAPs were interviewed, namely:

- **Type A** Residential Structure Owner;
- **Type B** those whose farm land would be affected (landowner/tenant and free occupation of land with permit)
- **Type C** is for Secondary Impact Areas (i.e. youth sector, aged sector, business sector, transport group, residential, women's and NGO/POs); and
- **Type D** for Big Land Developers & Real Estate Companies (the team had a hard time in interviewing Type D respondents due to company protocol).

Presented are basic demographic data followed by an assessment of the affected persons' socio-economic status. Their standard of living and socio-economic status are evaluated using the following data and indicators:

- (i) demography and basic information;
- (ii) primary and secondary source of income;
- (iii) household income and expenditures;
- (iv) type of ownership of structure occupied; and
- (v) type or lighting, water supply and sanitation

Demography and Basic Information

Household Population

There is a total of 32 residential structure owner-respondents (Type A) and 31 landowner/tenant/free occupation with permit respondents (Type B). Results of survey show that for both types, there are more than one household per dwelling structure; i.e., Type A – 32 respondents with 44 households, and Type B respondents -31 respondents with 47 households.

Household Structure

Majority of the respondents have a nuclear (54%) structure of household, 19% are living alone, 22% are family with extension and 5% sharing in one structure.

Language

This dialect used by 95% of the respondents, is Tagalog. This is followed by 'Ilocano" (2%), "Bicolano" (2%), and "Ilongo" (2%).

Educational Attainment

In terms of educational attainment, majority of the male respondents were able to finish secondary schooling; i.e., 52% of the respondents were able to finish the secondary education, 30% primary education and 11% successfully finished college. Four percent (4%) has taken up vocational and postgraduate level while the remaining 3% was not able to go to school.

In terms of **female respondents,** majority (41%) of them are able to finish secondary or high school education, seconded by 24% primary education. Female respondents who were able to finish college has a greater percentage (17%) compared to the male respondents.

Children who were able to finish college education have a high percentage with 32%, whereas 50% are still studying. Approximately 18% of the children are out of school youth.

Socioeconomic Characteristics

Socioeconomic characteristics of the PAPs are described in this report based on the results of the survey conducted for Type A and B respondents. The Project-affected persons' standard of living and socioeconomic status were evaluated using the following indicators:

- (i) household income and expenditures;
- (ii) type and ownership of structure occupied;
- (iii) source of lighting,
- (iv) source of water supply, and
- (v) type of sanitation facilities

Household Income and Expenditures

Household Income

The occupations of Project-affected persons interviewed primarily are farming (43%) and employment (24%). Results show that majority of the affected land is agricultural land and that the main livelihood to be displaced is farm income. When asked if the PAPs have other source of income aside from the primary income mentioned above, majority of them have no (52%) other income and are dependent only on farming.

In terms of monthly family income bracket of the Project-affected persons interviewed, 24% of them are earning between 6,001 to 15,000 and 22% have

income bracket of 10,001 to 15,000. Five percent (5%) of them are earning 3,000 or less and fall below the annual food threshold for family of **four** (4) in the Provinces of Cavite and Laguna --- **Php46,120** and **Php43,071** respectively based on National Statistical Yearbook 2010 under Region IV-A.

Household Expenditures

Bulk of the household expenditures consist of food (51%), followed by education (25%). The Respondents considered that if farming will be lost from their livelihood, food security problem will arise from their displacement. They believe that having a farmland will sustain their meal by planting backyard vegetables for daily consumption.

Land Ownership

Residential Lands

The respondents' landownership shows that out of 32 Type A respondents, 27 or 84% owned the land as well, while the remaining five (5) are renting the land where their structures are built.

Farm Lands

With regards to Type B respondents, 12 or 39% owned the land, three (3) are tenants (10%) and 16 (51%) are occupying the farmland with permit from the owner. The said 16 respondents are within Brgy. Carmen. Based on coordination meeting with the SAMACA NGO in Carmen, almost all of the tenants were paid by the developers and signed a waiver in exchange for their farmland. According to said NGO, since the land is not yet used by the developer, the tenants who received payments have been given a permit to continue their farming activity.

Structure Ownership

Out of 32 Type A households interviewed, 27, or 84% of them own the structure and only five (5) are renting.

Availability of Social Services

Power and Water Supply

All the barangays' **power supply** is provided by MERALCO. In terms of **water supply**, majority of the respondents get their water from artesian well for domestic use such as washing of clothes and dishes (10%), and from barangay water district (46%), while drinking water is being purchased like mineral and distilled water (48%).

Health

Health personnel visit all the barangays, but for more modern health facilities the nearest hospitals are located in *poblacions*. There are **five** (5) hospitals in the Municipality of Silang, **one** (1) of which is a private hospital located in Brgy. Sabutan. There are **three** (3) hospitals in Biñan and also **three** (3) major hospitals in Sta. Rosa. Based on the survey interview, **55 out of 63**, or **87%** said that the nearest health facility in the barangay is the health center.

Transportation

The means of transportation going to the above mentioned health facilities are by means of tricycle (70%), *pedicab* (5%), jeepney (10%); others are by walking (16%); i.e., those who are near the health center of the barangay.

Education

With regards to educational facilities, elementary schools are available in every barangay. In terms of secondary education, the barangays with educational facilities offering secondary education Sabutan National High School, Kaong National High School, Munting Ilog National High School. There are seven (7) tertiary schools in the Municipality of Silang. Of them there are two (2) public schools namely Cavite State University and Philippine National Police Academy located in Silang Proper.

In the City of Biñan and Sta. Rosa primary educational facilities are also available in every barangay, while secondary education facilities are located in the poblacions of each city. There are eight (8) tertiary educational facilities in Biñan. Polytechnic University of the Philippines is the available tertiary educational facility.

The means of transportation going to the nearest educational facilities in the abovementioned table are tricycles (81%), which is the most common means of transportation in each barangay. Around 17% live near schools and just walk.

Sanitation

All of the respondents have toilet facilities, with **97%** having toilet facilities installed inside their house while the remaining **3%** have them outside their house. Majority of respondents have semi-flush (**95%**) toilet and only **three** (**3**) has a flush type toilet facility for those living in Brgy. Sabutan, Silang, Cavite and Brgy. Timbao, Biñan, Laguna.

Solid Waste Management

Collection of garbage in barangays is very limited; only (11%) and mostly those who are near the *poblacions* area such as Brgy. Sabutan are serviced. The project-affected barangays generally bury (14%) or burn (71%) their waste in their backyard while 3% of them throw their trash in the nearby river.

Transportation

The common means of public utility transportation in the project area is **tricycle**. Barangays along the provincial roads are accessible by *jeepneys*.

River Use

To determine the stakeholders' dependency on rivers found in the project area, several questions were included in the survey of **198** stakeholders¹. Specifically they were asked the following questions:

- If they wash their clothes in the river;
- If they have laundry business utilizing the river;
- If they bathe in the river; and
- If they engage in fishing in the river

Based on the results of the survey, only 22 out of 198, or 11% are using the river for washing clothes. In terms of use of the river for laundry business, only 10 out of 198, or 10% are using the river for their laundry business.

When asked if they bathe in the river, **28 out of 198**, or **14%** said "Yes". It is interesting to note that majority of these are those from Type A (Residential Sector) respondents, particularly from Brgy. Sabutan.

Among all the respondents, the directly impacted show higher percentage of people fishing on the river with 28% (9 out of 32) and 26% (8 out of 31) for **Type A** and **Type B**, respectively, compared to only 4% (6 out of 129) of those who are indirectly affected, **Type C**.

Project Awareness

There are a total of **199** respondents who were asked on project awareness regarding the proposed Cavite –Laguna Expressway Project (Laguna Section). These consist of:

- (i) 32 Type A respondents (residential structure owners);
- (ii) 31 Type B respondents (PAPs at farm lands);

Interviewed stakeholders consist of: (i) **32** Type A respondents (residential structure owners); (ii) **31** Type B respondents (PAPs at farm lands); and **135** Type C respondents (indirectly affected respondents from residential, business, youth, transportation, senior, NGO/POs sectors)

(iii) 135 Type C respondents or the indirectly affected respondents from residential, business, youth, transportation, senior, NGO/POs sectors

Results show that majority (56%) of the respondents are well informed of the project.

The main sources of information were from the LGUs (26%) and Surveyors (21%). According to the Respondents who attended in the IEC, the project has been presented to them since 2004. The surveyors also informed them during their staking of the alignment. Other sources of information include Consultants (JICA-ECOSYSCORP, INC.), neighbors and friends, and relatives who attended the PCMs, and relayed the information to them.

Social Acceptability

Out of **199** respondents who were asked on their social acceptability on the proposed Cavite –Laguna Expressway Project (Laguna Section), **majority** (**74%**) **are in favor** of the Project. Their common reasons are:

- For improvement of accessibility and for the future development of their province;
- Others said that since that this is a government project, they have no other choice but to accept it;

The remaining 26% not in favor of the project worries too much on the loss of their land. The highest percentage of respondents who refuses the project are those losing their dwelling structures.

Informal Settlers

There are no identified informal settlers to be affected by the CALAX Project.

Farmlands and Livelihood to be Affected

As mentioned in this report, the western section of this project is mostly agricultural land which is located in the municipality of Silang. The loss of livelihood to be mostly affected is farming. Details on **livelihood** to be affected and the corresponding eligibilities and entitlements are presented in the **Resettlement Action Plan (RAP).**

IMPACT IDENTIFICATION, MITIGATION AND ENHANCEMENT

Table III presents a summary of the most significant predicted impacts most likely to affect the Land, Water, Air, and People during the Pre-Construction, Construction, Abandonment/Decommissioning, and Operational Phases of the Proposed CALA Expressway Project. The corresponding mitigation/enhancement of each identified impacts are likewise included in the matrices.

Table III Summary Impacts Management Plan (1/16)				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures	
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES			
THE LAND				
Land Use Classification	A total of about 92.56 ha of non-irrigated agricultural lands (approximately 34.5 ha of corn fields and 58.06 pineapple plantation) will be	Long-term, Negative	Just compensation in accordance with the LARRIPP/WBOP 4.12 will be accorded to the affected farmland and property owners; Construction activities will be limited to the required 50.00 m.	
	traversed by the alignment		 Construction activities will be limited to the required 50-60 m ROW limit to minimize crop damage and unwarranted loss of farmlands; 	
	Loss of fertile topsoil		Minimize unnecessary earth moving and related activities; and	
			Un-recycled/unused topsoil will be replaced/delivered to adjacent farmlands	
Geology		Long-term, Negative	Establish seismic hazard characteristics for the project site based on the seismic zone and proximity of the site to active seismic sources, site soil profile characteristics and structure importance factor through:	
			Analysis of aerial photographs/radar images of the project site;	
			Geo-resistivity survey to determine the exact location, trend, and zone width of the fault trace/s; and	
			> Trenching	
			 Undertake a site specific Probabilistic Seismic Hazard Assessment (PSHA) for the bridge and fly over components of the project to: 	
			➢ Estimate the Maximum Considered Earthquake (MCE) defined as the largest earthquake that appears possible along presently recognized faults having 2% probability of not being exceeded in 50 years corresponding to typical return period of approximately 2,500 years at the site; and	
			Estimate the Design Basis Earthquake (DBE) usually defined in practice as the earthquake with a ground motion that has 10% probability of being exceeded at least once over a period of 50 years and a corresponding statistical return period of 475 years	

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES		
THE LAND			
Geology	Possible occurrence of rain-induced landslide and soil erosion along cut sections and slope areas	Short-term, Negative	 Suitable angle of repose along cut areas will be maintained; Slope and pier protection measures will be implemented along cut sections and unstable slopes;
			• Removal of vegetation and tree cutting will be limited to the required ROW of 50-60 m ; and
			 Re-vegetation of identified erosion prone areas with suitable grass species (e.g. vetiver) and other common slope protection plant species will be considered
	Possible occurrence of earthquake-induced landslides	Long-term, Negative	 If ever, occurrence of earthquake-induced will be confined or gully walls and possibly at the escarpment at the eastern margin of the volcanic slope;
			The alignment will not pass along escarpments; and
			Bridges crossing gullies will have well-engineered abutments founded into the gully floor or imbedded into the gully walls
	Occurrence of ash fall due to Taal Volcano activity:	Short-term, Negative	Volcanic ash accumulation along the project roadway should be cleared immediately;
	Ash can clog drainage;Fine ash is extremely slippery, hampering		 Vulnerable people must wear face mask or cover their nose 8 mouth with damp handkerchief or cloth;
	driving and walking;		Public buildings and critical infrastructures are most vulnerable
	 Volcanic ash is gritty, abrasive and corrosive and can trouble infants, the elderly and those 		Identify and organize ash clearing teams to monitor and clear ash accumulation;
	with respiratory ailments.;		Closely monitor the bulletin of PHIVOLCS and heed their advice and
	 Ash can abrade and damage machinery and sensitive electronic/electrical equipment; and 		Issue warning bulletin to road users
	Long-term exposure to wet ash can corrode metal		

Environmental	Potential Impact	Duration and Turns	Mitigation/Enhancement Macauses
Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION	AND CONSTRUCTION PHASES		
THE LAND			
Geology	Occurrence of volcanic smog due to Taal Volcano eruption:	Short-term, Negative	Closely monitor the bulletin of PHIVOLCS and heed their advice; and
	 Generally associated with eruption clouds/ash fall; 		Issue warning bulletin to road users
	 Can aggravate respiratory problems; and 		
	 Can form acid rain that can corrode metals and contaminate drinking water if collected or sourced from rainwater catchment systems 		
Flooding	Possible aggravation of existing localized flooding at adjacent areas of the alignment	Long-term, Negative	The alignment crosses a number of deep gullies that flow towards the receiving bodies of water (e.g. Laguna de Bay etc.);
			• Existing drainage systems at executive subdivisions and developed areas adjacent to the CALA Expressway alignment accommodate storm water discharge from the road;
			Dumping of garbage along the natural waterways must be prohibited; and
			Regular de-clogging of existing drainage lines on both private and public properties/development areas adjacent to the alignment
Terrestrial Biology	Minimal loss of natural and cultivated vegetation	Long-term, Negative	Unavoidable but loss of vegetation is expected to be minimal;
(Flora)			Just compensation in accordance with the LARRIPP/WBOP 4.12 will be accorded to the farmers for loss of agricultural crops;
			"Permit To Cut" will be secured prior to any tree cutting activities;
			Limit tree cutting within the required ROW of 50-60 m;
			Balling/relocation of trees will be carefully undertaken;
			Undertake reforestation activities at area/s designated by the DENR-FMB Region IV-A; and
			Strict implementation of tree planting along National Roads as per DPWH D.O. 131, Series of 1995

Table III Summary Im	Table III Summary Impacts Management Plan (4/16)			
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures	
PRE-CONSTRUCTION	AND CONSTRUCTION PHASES			
THE LAND				
Terrestrial Biology (Fauna)	Temporary disturbance to wildlife movements and activities, particularly avifauna (bird)	Short-term, Negative	 Significant bird activities such as feeding and nesting can be temporarily performed at adjacent forest patches and grassland areas; 	
			Education of workers will be educated on protection and conservation of wildlife fauna, especially birds; and	
			Bird poaching will be strictly prohibited	
THE WATER				
Surface Hydrology	Possible decrease in water flow rate of the waterways crossed by the alignment due to impediment caused by construction spoils and debris	Short-term, Negative	 Provision of nets at bridge construction sites to prevent falling of debris into the waterways; 	
			 Temporary rechanneling of stream flow along major waterways such as Malaking llog River, Lumbia River, and Malindig River; and 	
			Regular hauling and disposal of construction spoils and debris to the designated dumpsites	
Groundwater	Possible contamination of groundwater table due to oil seepage and indiscriminate disposal of toxic chemicals (i.e. paints and used oils)	Long-term, Negative	Motor pool area will be located away from existing groundwater sources; and	
			Provision of storage facilities for used oils and other toxic wastes in the motor pool area; and	
			 Regular disposal of hazardous wastes will be handled by DENR- accredited company and will be disposed to DENR-approved sites 	
Water Quality	Possible increase in the present level of total coliform content of the waterways	Short-term, Negative	 Provision of temporary sanitation facilities, particularly portable toilets and garbage bins at all construction sites, temporary field offices, and workers' camp sites; 	
			Strict implementation of proper waste segregation;	
			 Regular hauling and disposal of solid and domestic wastes generated by the workers to the designated dumpsites; 	

	pacts Management Plan (5/12)		
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION	AND CONSTRUCTION PHASES		
THE WATER			
Water Quality	Possible increase in the present level of total coliform content of the waterways	Short-term, Negative	Daily inspection of the workers' camp sites, temporary field offices, and all construction areas; and
			Twice a year coliform level monitoring along selected waterways crossed by the alignment
	Possible increase in the siltation level of the waterways due to surface run-off	Short-term, Negative	Earth moving activities and related construction works along cut and slope areas and bridge sites will be cautiously undertaken to minimize soil disturbance;
			Provision of temporary silt traps along the waterways;
			Re-vegetation of exposed slopes and open construction areas adjacent to the waterways; and
			TSS level monitoring along selected waterways will be conducted twice a year
	Possible increase in pH level of the waterways due to concrete spillage	Short-term, Negative	Close supervision of concrete pouring and road surfacing at bridge construction sites;
			Installation of nets at bridge construction sites; and
			Washing of transit mixers and related construction equipment along the waterways will be strictly prohibited
	Possible increase in the oil & grease level of the waterways due to oil spillage from heavy	Short-term, Negative	Strict compliance to the Periodic Service Maintenance (PMS) of the construction equipment and machineries;
	equipment and machineries during bridge construction		Washing of construction equipment and machineries along the waterways will be strictly prohibited; and
			On-site repair and maintenance of the construction equipment will be strictly prohibited

Table III Summary Imp	Table III Summary Impacts Management Plan (6/16)				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures		
PRE-CONSTRUCTION	AND CONSTRUCTION PHASES				
THE AIR					
Air Quality	Possible increase in the TSP level at the construction site and adjacent dust sensitive receptor areas such as residential, schools, and hospitals due to dust re-suspension	Short-term, Negative	 Regular spraying of water at exposed and cleared construction areas; Strict enforcement of the 20 kph speed limit along the construction areas, particularly at dust sensitive receptor areas; Temporary stockpiles of un-recycled materials and construction spoils will be covered with tarpaulin or sack materials; Regular hauling and disposal of construction spoils to areas duly-approved by the DENR and/or concerned LGUs; Delivery and hauling trucks will be provided with tarpaulin or sack materials; and 		
	Describe in the consentration levels of	Short-term, Negative	Conduct a quarterly TSP monitoring at dust sensitive receptor areas during the pre-construction and construction phases PMS of acceptantian acquirement and machinering and unhides		
	SO ₂ and NO ₂ due to exhaust gas emissions from various construction vehicles, equipment, and	n	 PMS of construction equipment and machineries, and vehicles will be strictly complied with to ensure these are in good working condition at all times; Daily routine check-up of construction vehicles, equipment, and 		
			machineries must be strictly complied with; and • Quarterly SO ₂ and NO ₂ sampling at air pollution sensitive areas will be conducted during the pre-construction and construction phases of the project		
Noise Level and Vibration	Possible increase in the noise level due to operation of various construction equipment and machineries	Short-term, Negative	Bored piles using a special boring equipment will be adopted during foundation works instead of pile driving to prevent ground vibration;		
	Possible incidence of ground vibration due to foundation works and related activities		 Installation of noise suppressors to construction equipment and machineries to maintain noise generated at permissible level; High noise generating construction activities will be scheduled and undertaken during daytime only; 		

Table III Summary Imp	Table III Summary Impacts Management Plan (7/16)				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures		
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES				
THE AIR					
Noise Level and Vibration	Possible increase in the noise level due to operation of various construction equipment and machineries	Short-term, Negative	Installation of temporary noise barriers at noise sensitive receptor areas such as residential, schools, hospitals, and places of worships to maintain noise level at permissible limit; and		
	Possible incidence of ground vibration due to foundation works and related activities		Strict compliance to the PMS of the construction equipment and machineries		
THE PEOPLE					
Assets and Income	Displacement of residential and commercial structures within the ROW Loss of properties/farmlands and livelihood	Long-term, Negative	 A final Resettlement Action Plan (RAP) with full consensus with the PAPs, and inventories of land and other properties will be prepared prior to implementation of the project; PAPs will be compensated in accordance with LARRIPP/ WBOP 4.12 for loss of assets and source of livelihood; Limit construction within the required ROW of 50-60 m 		
	Loss of commercial crops like pineapple, coffee, coconut, papaya, cassava, and banana	Long-term, Negative	 Prepare a final RAP with full consensus with the PAPs, prior to implementation of the project; and Just compensation in accordance with LARRIPP/ WBOP 4.12 will be accorded to PAPs for loss of crops 		
	Disturbance to agricultural activities along the proposed CALA Expressway alignment	Short-term, Negative	 Provision of temporary farm crossings at affected farmlands; and Disturbance compensation in accordance with LARRIPP/ WBOP 4.12 will be accorded to the PAPs; 		
	Accidental filling up of farmlands adjacent to the construction areas	Short-term, Negative	 Locate temporary stockpiles of construction materials, construction spoils and debris away from agricultural lands; and In case of accidental filling up, damage compensation in accordance with LARRIPP/ WBOP 4.12 will be accorded to the affected farmers 		

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION	AND CONSTRUCTION PHASES		
THE PEOPLE			
Temporary Employment	Generation of temporary employment to qualified residents in the direct and indirect impact areas	Short-term, Positive	 Qualified workers duly endorsed by the barangay captains from the impact areas will be given priority in hiring during implementation of the project
Basic Social Service	Interruption of water supply in areas serviced by the wells located in Brgy. Sabutan, Silang, Cavite Possible interruption of power supply and telecommunication service	Short-term, Negative	Prompt restoration of affected wells in Brgy. Sabutan;
Utilities			 Prompt relocation and full restoration of affected basic service utilities to their normal functions to avoid inconvenience to the public; and
			 Proper notification of affected residents to enable them to undertake the necessary measures to minimize effect of interruption
Social Service Facilities	Increase in demand of basic social service facilities such as health centers and places of worships due to in-migration of workers	Short-term, Negative	Provision of basic social service facilities such as health care center, eating spaces, and places of worships at the work sites
Occupational Health and Safety	Long-term exposure of workers, especially heavy equipment operators to high noise level may lead to hearing impairment	Short-term, Negative	 Provision of adequate Personal Protective Equipment (PPE) such as ear muffs, gas/protective masks, hard hats, safety boots, safety gloves, reflectorized vests, and other related safety gears to workers;
	Long-term exposure of workers, especially heavy		Wearing of the provided PPEs will be strictly implemented;
	equipment operators to exhaust gas emissions may result to upper respiratory ailments		Personnel will be trained on safety procedures and educated on health standards;
	Direct contact of workers handling toxic materials may lead to chronic diseases		Personnel will be comprehensively trained on handling of toxic materials;

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	ND CONSTRUCTION PHASES		
THE PEOPLE			
Occupational Health and Safety	Long-term exposure of workers, especially heavy equipment operators to high noise level may lead to hearing impairment Long-term exposure of workers, especially heavy equipment operators to exhaust gas emissions may result to upper respiratory ailments Direct contact of workers handling toxic materials may lead to chronic diseases	Short-term, Negative	 Provision of medical clinic and first aid station facilities supervised by a registered in the work areas and field offices; Formulate an Emergency Response Plan (ERP) to quickly respond to any type of emergency situation within the construction area; Regular conduct of medical check-up of workers; Strict compliance to the PMS of the heavy equipment, machineries, and vehicles; Provision of an emergency vehicle on stand-by within the construction areas at all times
Waste Management, Sanitation, and Public Health	Possible spread of communicable diseases due to improper wastes management Potential spread of communicable diseases in the receiving communities due to in-migration of workers Possible spread of sexually transmitted diseases (STDs)	Short-term, Negative	 Provision of adequate temporary sanitation facilities such as portable toilets and trash bins at all construction sites, workers camps, and field offices; Strict enforcement of proper waste segregation scheme; Regular hauling and disposal of domestic and solid wastes generated by the workers to the designated dumpsites; Daily inspection of workers' camps and field offices to ensure good housekeeping; Strict medical screening of migrant workers during hiring period; Regular medical check-up of workers; and Group consultations will be undertaken to promote awareness among the community on how to prevent transmission of STDs

Environmental	Potential Impact	Duration and Type	Mitigation/Enhancement Measures
Component Likely to be Affected	·	of impacts	
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES		
THE PEOPLE			
Public Safety	Safety of pedestrians and residents near the construction areas	Short-term, negative	 All excavation areas will be enclosed with metal sheets and barriers will be installed at the construction areas to limit access to the public, especially children;
			 Provision of pedestrians crosswalks at critical construction areas such as built-up areas, schools, places of worships, and hospitals;
			 Provision of adequate lighting and reflectorized warning signs within the construction sites to ensure safety of public, especially during nighttime; and
			Designation of well-trained traffic aides and flagmen at critical construction sites
Safety of Motorists	Safety of motorists plying the major and minor roads crossing the alignment Safety of motorists at bridge and interchange construction sites	Short-term, Negative	 Installation of adequate lighting and reflectorized warning signs along the entire construction sites, particularly bridge sites and interchange locations to ensure safety of motorists, especially during nighttime;
			• Strict implementation of the approved Traffic Management Plan (TMP) and re-routing schemes along major roads, bridge sites and interchange locations;
			 Designation of well-trained traffic aides and flagmen along road intersections, bridge sites, interchange locations, and other critical construction sites to direct traffic and assist motorists; and
			Parking of idle construction equipment and vehicles along the roads will be prohibited, especially during nighttime
Traffic	Possible traffic congestion along major and minor roads intersected by the proposed CALA Expressway alignment and other surrounding arterial roads Traffic congestion at bridge and interchange construction sites	Short-term, Negative	Strict implementation of the traffic measures indicated in the approved Traffic Impact Assessment (TIA) to minimize traffic congestion;
			 Strict implementation of the approved TMP and re-routing schemes along major roads, bridge sites, interchange locations, and other busy construction areas;

Table III Summary Impo	Table III Summary Impacts Management Plan (11/16)				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures		
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES				
THE PEOPLE					
Traffic	Possible traffic congestion along major and minor roads intersected by the proposed CALA Expressway alignment and other surrounding arterial roads Traffic congestion at bridge and interchange construction sites	Short-term, Negative	 Limit parking/waiting time of construction vehicles and equipment along major roads and busy areas; and Delivery and transport of fabricated construction materials will be done during nighttime 		
DEMOBILIZATION/DEC	OMMISSIONING PHASE		1		
THE LAND					
Geology	Stability of cut slopes, landslide and erosion prone areas	Long-term, Negative	 The Contractor must ensure that: Re-vegetation of the exposed and cleared slopes is in place; Slope and pier protection with retaining structures are in place; and Angle of repose along cut sections are maintained Conduct a joint site inspection between the Environmental Safety and Health Officer (ESHO) of the Contractor, representatives from the DPWH, representatives from the concerned LGUs, representatives from the DENR Region IV-A, and community leaders of affected barangays will be undertaken to ensure that protection measures are in place 		
Terrestrial Biology (Flora)	Replacement of cut trees Revegetation of cut slopes and embankment areas, and landscaping of areas stripped of vegetation cover Tree planting along the National Roads/newly constructed CALA Expressway	Long-term, Positive	 The Contractor must ensure that: The survival rate of the tree species introduced is established; Revegetation of the cut slopes and embankment areas is in place; Landscaping of areas stripped of vegetation cover is in place; and The survival rate of the trees planted along the National Roads is established 		

Table III Summary Impa	Table III Summary Impacts Management Plan (12/16)				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures		
DEMOBILIZATION/DEC	OMMISSIONING PHASE				
THE LAND					
Terrestrial Biology (Flora)	Replacement of cut trees Revegetation of cut slopes and embankment areas, and landscaping of areas stripped of vegetation cover Tree planting along the National Roads/newly constructed CALA Expressway	Long-term, Positive	Conduct a joint site inspection between the ESHO of the Contractor, DPWH representatives, representatives from the concerned LGUs, representatives of DENR Region IV-A, and community leaders of affected barangays to ensure that reforestation, re-vegetation, and tree planting activities are in place		
THE WATER					
Surface Hydrology	Possible impediment of water flow of waterways due to abandoned construction spoils and debris	Short-term, Negative	 The Contractor must ensure that all temporary stockpiles of construction spoils and debris are totally removed from the construction areas and are properly disposed to the designated dumpsites and not abandoned in the construction areas; and Conduct a joint site inspection between the ESHO of the Contractor, DPWH representatives, representatives from the Solid Waste Management and Disposal Office of the concerned LGUs, representatives of DENR Region IV-A, and community leaders of affected barangays ensure that all bridge sites are free from construction spoils and debris 		
Groundwater	Possible contamination of water tables due to abandoned used oils and other toxic materials	Long-term, Negative	 Ensure complete closure of the motorpool; Complete and proper dismantling of the temporary storage facilities in the motorpool area; Ensure that all toxic wastes such hauled and disposed to site/s duly approved by DENR Region IV-A; and Conduct a joint site inspection between ESHO of the Contractor, DPWH representatives, representatives from the Solid Waste Management and Disposal Office of the concerned LGUs, representatives of DENR Region IV-A, and community leaders of affected barangays to ensure that the motorpool area is completely closed and no toxic wastes are abandoned 		

Table III Summary Impacts Management Plan (13/16)				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures	
DEMOBILIZATION/DECOMMISSIONING PHASE				
THE WATER				
Water Quality	Possible contamination of the waterways due to abandoned domestic and solid wastes	Short-term, Negative	 The Contractor must ensure that: All temporary sanitation facilities are dismantled and removed from the construction sites; and All remaining solid and domestic wastes are properly disposed to the designated dumpsites and not abandoned at the work sites; Conduct a joint site inspection between the ESHO of the Contractor, representatives from DPWH, representatives from the Solid Waste Management and Sanitation Office of the concerned LGUs, and community leaders of affected barangays to ensure that all temporary sanitation facilities are dismantled and no wastes are abandoned at the work sites 	
	Possible siltation of the waterways crossed by the CALA Expressway alignment	Short-term, Negative	 The Contractor must ensure that all remaining stockpiles of unrecycled soil materials and construction spoils are properly disposed to the designated dumpsites; and Conduct a joint site inspection between the ESHO of the Contractor, DPWH representatives, representatives from the Solid Waste Management and Disposal Office of the concerned LGUs, and community leaders of affected barangays to ensure that no stockpiles of un-recycled soil materials and construction spoils are abandoned 	
THE PEOPLE	THE PEOPLE			
Basic Social Service Utilities	Extended interruption of water and power supplies, and telecommunication lines	Short-term, Negative	 The Contractor must ensure that the displaced wells in Brgy. Sabutan, Silang, Cavite are relocated and restored to normal function; Prompt relocation and restoration to normal functions of water and power supplies, and telecommunication lines must be ensured by the Contractor; 	

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
DEMOBILIZATION/DEC	OMMISSIONING PHASE		
THE PEOPLE			
Basic Social Service Utilities	Extended interruption of water and power supplies, and telecommunication lines	Short-term, Negative	Conduct a joint site inspection between the ESHO of the Contractor, representatives from the concerned utility companies representatives from the concerned LGUs, representative from the DPWH, and leaders of affected communities to ensure replacement, relocation, and complete restoration of affected utility service facilities
Waste Management, Sanitation, and Public Health	Possible spread of communicable diseases due to abandoned solid and domestic wastes	Short-term, Negative	The Contractor must ensure that:
			➢ All temporary sanitation facilities are dismantled and removed from the construction sites, workers' camps, and field offices immediately after construction works are completed; and
			All remaining solid and domestic wastes are properly disposed to the designated dumpsites
			 Conduct a joint site inspection between the ESHO of the Contractor, representatives from DPWH, representatives from the Solid Waste Management and Sanitation Office of the concerned LGUs, and community leaders of affected barangays to ensure that all temporary sanitation facilities are completely dismantled and no wastes are abandoned
Illegal Settlement	Permanent and illegal settlement at workers camps and field offices	Long-term, Negative	Ensure complete closure of all temporary facilities such as bunk houses and field offices; and
			 Conduct a joint site inspection between the ESHO of the Contractor, representatives from DPWH, concerned LGUs, and community leaders of affected barangays to ensure complete closure of workers' camps and temporary field offices

Table III Summary Impacts Management Plan (15/16)			
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
OPERATIONAL PHASE			
THE LAND			
Land Use	Possible conversion of marginally utilized agricultural lands adjacent to the newly constructed CALA Expressway, particularly in Brgy. Kaong, Sabutan, Tibig, Carmen, and Inchican in Silang, Cavite into other uses	Long-term, Negative	Concerned LGUs must pass necessary ordinances and strictly implement such to support existing legislations prohibiting illegal conversion of agricultural lands into other uses
THE AIR			
Air Quality	Possible increase in TSP level in areas along the newly constructed CALA Expressway due to increase in vehicular traffic volume	Long-term, Negative	 Continuous monitoring of the survival rate of the trees planted along the newly constructed CALA Expressway, that act not only as natural sieves for re-suspended dust particles, but also enhance aesthetics of the road sides; and Strict implementation of the Philippine Clean Air Act and Anti-
			Smoke Belching Law by the concerned government agencies
	Possible increase in the level of gaseous air contaminants such as SO_2 and NO_2 due to increase in vehicular traffic volume	Long-term, Negative	Continuous monitoring of the survival rate of the trees planted along the newly constructed CALA Expressway. Trees absorb gaseous air pollutants and convert them into oxygen through transpiration process; and
			Strict implementation of the Philippine Clean Air Act and Anti- Smoke Belching Law by the concerned government agencies
Noise Level	Possible increase in the present level of noise along the newly constructed CALA Expressway, particularly at noise sensitive receptor areas due to increase in volume of vehicular traffic	Long-term, Negative	The "No Blowing of Horns" at noise sensitive receptor areas such as schools, hospitals, and places of worships will be strictly enforced;
			• If necessary, adequate noise barriers will be installed at noise sensitive receptors adjacent to the CALA Expressway such as residential areas, schools, hospitals, and places of worships

Table III Summary Impacts Management Plan (16/16)			
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
THE PEOPLE			
Economy	The newly constructed CALAX Expressway will: Provide fast, safe, comfortable and reliable means of transport in Cavite and Laguna Provinces; Decongest traffic of roads in Cavite and Laguna Provinces; Support economic development by providing better transport access to economic/industrial zones in the area; and Support sound urbanization in the areas traversed by the CALA Expressway	Long-term, Positive	Periodic inspection and maintenance of the newly constructed CALA Expressway based on standard DPWH inspection and maintenance procedures for roads and bridges will be undertaken to maximize optimum service to road users
Road Safety	Safety of motorists plying the newly constructed CALA Expressway	Long-term, Negative	 Road signs and markings, information display board, and streetlights, especially along bridges and interchanges will be properly maintained; and Periodic inspection and maintenance of the newly constructed CALA Expressway based on standard DPWH inspection and maintenance procedures for roads and bridges will be undertaken to maximize optimum service to road users

Chapter 1 Project Description

1 PROJECT DESCRIPTION

1.1 PROJECT LOCATION AND AREA

1.1.1 Project Location

The proposed CALA Expressway alignment encompasses the Municipality of Silang, in Cavite, and the Cities of Santa Rosa and Biñan in the Province of Laguna. (**See Figures 1.1.1-1** and **1.1.1-2**).

Silang is a "landlocked" 1st Class municipality situated on the eastern part of Cavite Province. The town is geographically located at N14°14′0″, E120°59′0″, and is approximately 45 kilometers south of Manila. It is bounded on the north by the City of Dasmariñas and the Municipalities of General Trias and General Mariano Alvarez (*GMA*), on the west by the Municipality of Amadeo, and the City of Tagaytay on the south. From its starting point along E. Aguinaldo Highway, the alignment will cross a total of six (6) barangays. These are Brgy. Sabutan, Kaong, Tibig, Munting Ilog, Inchican, and Carmen.

Tagged as the "Lion City of the South", since 1994, Santa Rosa City lies approximately **38 kilometers** south of Manila via the South Luzon Expressway, making it a suburban residential community of Metro Manila. Geographically, the City is located at **N14°16′43″**, **E121°5′48″**, bounded on the north by Biñan City, on the east by Laguna de Bay, and on the south by the Municipality of Cabuyao. Here in Santa Rosa City, **only** the southwestern barangay of Santo Domingo will be traversed by the alignment.

Located at geographical coordinates **N14 20'0"**, **E121°5'0"**, Biñan is a "first class component city" in the Philippines. It is one of the **three** (3) cities comprising the 1st Congressional District of the Province of Laguna (the Cities of San Pedro and Santa Rosa are the others). The City of Biñan is situated about **34 kilometers** south of Manila. It is bounded on the north by San Pedro City, on the south by Santa Rosa City, and on the west by the Municipality of Carmona, Cavite. On the eastern and northern horizon lies the Laguna de Bay, the largest lake in the country. The alignment will traverse a total of

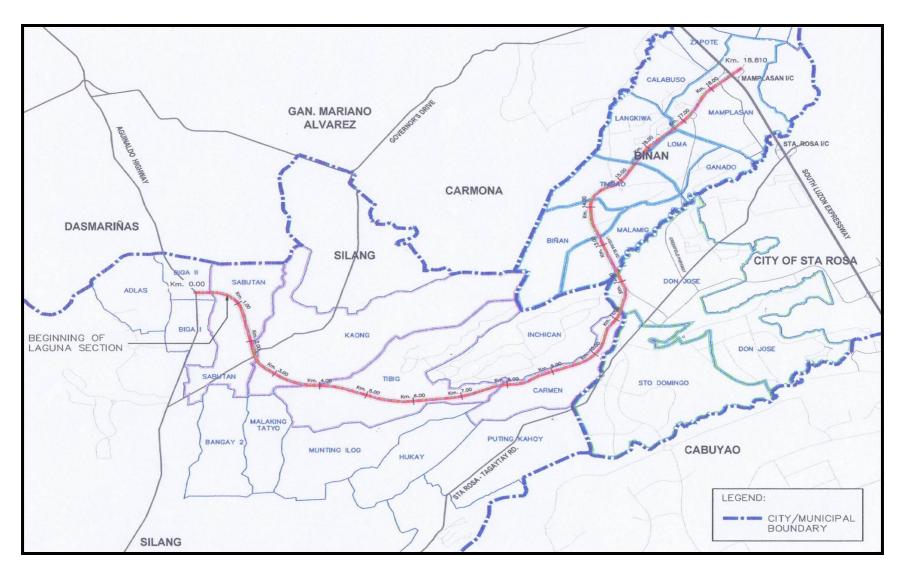


Figure 1.1.1-1a Project Area and Location

Figure 1.1.1-2 **Project Site Political Boundary Map**

1.1.2 Rationale for Selection of Primary and Secondary Impact Areas

The primary and secondary impact areas were selected based on the types of potential impacts of the proposed expressway to the affected communities. Primary or Direct Impact Areas (DIA) are areas to be directly affected by the CALA Expressway alignment where acquisition of private properties for the ROW and displacement of residential and commercial structures would be required.

On the other hand, the Secondary or Indirect Impact Areas (IIA) are those to be indirectly affected by the noise and vibration disturbance, air pollution, and inconvenienced due to various construction activities during the project implementation. Illustrated in **Figure 1.1.2-1** are the areas to be directly and indirectly affected by the proposed CALA Expressway alignment.

1.1.3 Site Conditions

Site conditions can be classified into four (4) sections as follows;

(1) Western Section: Km. 0+000 – Km. 6+000 (L=6.0 km.)

This area is currently cultivated agricultural lands, however, many lands have been already acquired by large scale land developers such as Stateland Corp., Cathay Land Corp., etc.

Land developers will implement residential and commercial development in their lands, therefore, this western section will be urbanized in the near future.

(2) Middle Section: Km. 6+000 – Km. 11+000 (L=5.0 km.)

All lands of this area have already been acquired by Extra Ordinary Development Corp., although the lands are still cultivated agricultural lands. Extra Ordinary Development Corp. will start residential and commercial development in the near future, thus the area will be urbanized.

(3) Eastern Section: Km 11+000 – Km. 17+000 (L=6.0 km.)

The expressway will utilize existing road right-of-way of Laguna Blvd., which has a 60mm ROW. Laguna Blvd. is still a private road owned by Ayala Corp.. Eastern side of Laguna Blvd. is the existing industrial area where many factories are in operation.

Western side of Laguna Blvd. is residential area with various subdivisions. The Government will purchase 60m ROW from Ayala Corp.

(4) End Section: Km. 17+000 – Km. 18+300 (L=1.3 km.)

The land of this section is owned by Greenfield Development Corp. Land is currently idle lands. Greenfield Development Corp. will develop this area as a commercial and residential area, therefore, this area will be urbanized in the near future.

Figure 1.1.3-1 shows the photos of the site condition.

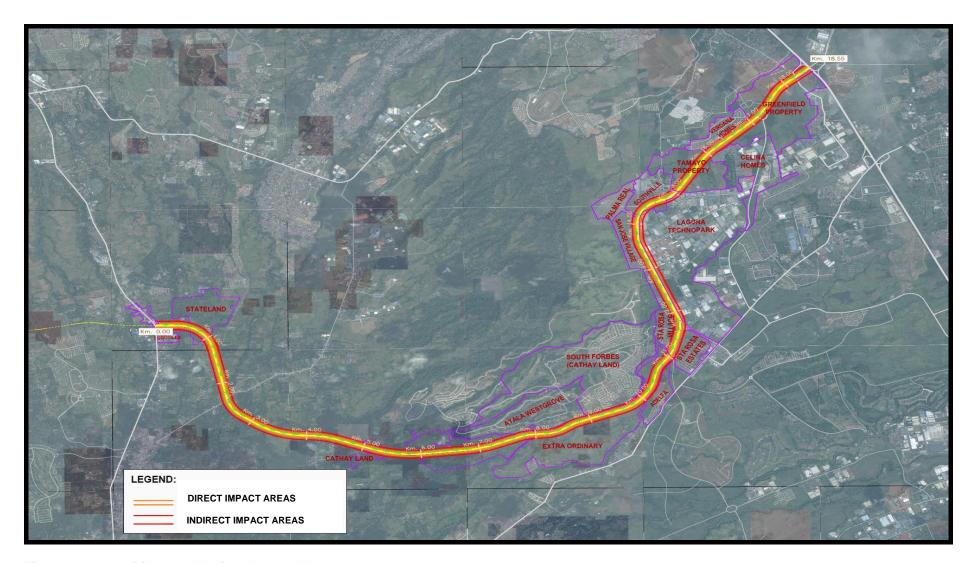


Figure 1.1.2-1 Direct and Indirect Impact Areas

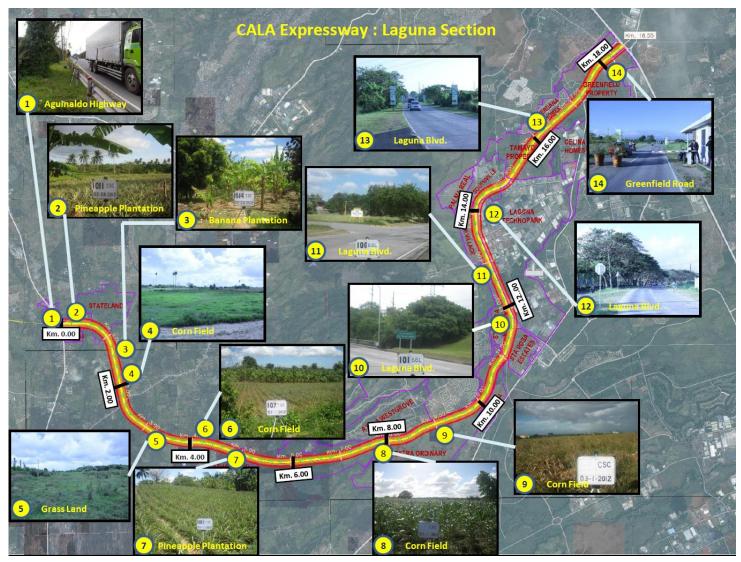


Figure 1.1.3-1 Site Condition

1.2 PROJECT RATIONALE

Cavite and Laguna are neighboring provinces of Metro Manila. Both provinces are rapidly urbanizing to accommodate spilled over population from Metro Manila. Population growth rates of Cavite and Laguna are quite high (4.76% per annum in the Cavite and 3.34% per annum in the Laguna) from 2000 to 2007. Economic activities, particularly manufacturing industry, are also quite active. Thus, two provinces are within socio-economic activities of Metro Manila.

In spite of rapid urbanization, the road network development was not so significant, only widening of Aguinaldo Highway and Governor's Drive to a 4-lane road was made and a portion of Daang Hari Road was constructed in the last 20 years. Road network development was lagged behind the rapid urbanization. There are several Provincial Roads however, are still 2-lane roads.

Insufficient road network development is now resulting in traffic congestions of national roads and most of provincial roads.

High capacity roads which allows fast, safe, comfortable and reliable means of transport is highly needed in the areas to reduce traffic congestions in Cavite and Laguna Provinces.

Many economic zones/industrial estates have already been operated and will be further developed, taking advantages of the Provinces' proximity to Metro Manila. Both Cavite and Laguna are now the center of manufacturing industry in the Philippines contributing to economic development of the country and generation of a lot of job opportunities.

Various real estate companies (land developers) are developing commercial and residential areas in Cavite and Laguna. They have already acquired lands and some areas have been developed and have been sold out or are selling lands/lots they developed. It is expected that their lands will be sold out within 10 to 15 years and will be fully urbanized.

Above development will stimulate economic and social activities in the two provinces, thus transport network to support such economic and social activities is definitely needed.

As mentioned, urbanization of the areas is led by the private sector, particularly by land developers. With the lack of land development master plan by the Government, and developers only plan within their own properties and transport access to/from their properties is only made to the existing roads and/or existing expressway.

Sound urbanization should be guided/lead by the proper road network. National road network in the area of Laguna section is quite scarce, thus CALAX is needed to be planned to guide/lead sound urbanization of the area.

The area of Laguna section lacks public roads which are only Aguinaldo Highway, Governor's Drive and Sta. Rosa–Tagaytay Road. Instead, there are many private roads developed by land developers, most of which are not open to the general public and only these cars allowed by the land owners can pass. Thus, the development of public roads which can be used by the general public is needed.

There are two expressways in Cavite and Laguna Provinces, namely SLEX and CAVITEX, however they are functioning individually and the expressway network is not formed yet. If something happens and traffic of an expressway becomes interrupted, travelers have no other choice but to select/use the congested road.

The road transportation network of Cavite and Laguna has failed to catch up with the region's rapid growth, thus resulting in increasing traffic congestion. Since this growth has been closely intertwined with Metro Manila, the congestion is more severe on roads that link the provinces to the national capital. This north-south pattern is likely to continue over the medium term – with congestion getting worse before it gets better for that reason the CALA Expressway project is proposed to seek for the following objectives:

The traffic congestion in Cavite and Laguna is rapidly increasing together with the continuous growth of the CALA Region. This congestion is more severe on the road that has a direct link in Metro Manila. The deteriorating traffic condition in the area is being addressed by the Philippine Government in coordination with international donor agencies such as JICA and the World Bank.

For this reason the CALA Expressway Project was proposed and seeks for the following objective:

- To alleviate the traffic congestion in the CALA area;
- To improve the living environment of local residents;
- To promote dispersion of urban function of Metro Manila; and
- To improve the investment in the given area concerning its strategic location for the international port in Batangas City

1.3 PROJECT ALTERNATIVES

1.3.1 Design Criteria and Standards

Table 1.3.1-1 shows the proposed geometric design criteria for CALA Expressway.

Table 1.3.1-1 Proposed Geometric Design Criteria for the CALA Expressway (1/2)

DESIGN SPEED	100 km/h CALA Expressway	
HORIZONTAL ALIGNMENT		
Desirable Minimum Radius (m)	700	
Minimum Radius (m)	460	
Exceptional Minimum Radius (m)	380	
Minimum Curved Length (m)	170	
Minimum Transition Curve Length (m)	85	
Minimum Radius allowed to omit a Transition Curve		
Desirable Minimum Radius (m)	3,000	
Minimum Radius	1,500	
VERTICAL ALIGNMENT		
Maximum Grade (%)	3	
Exceptional Maximum Grade (%)	6	
	4%: 700	
Critical Lengths for Exceptional Grade (m)	5%: 500	
	6%: 400	

Table 1.3-1 Proposed Geometric Design Criteria for the CALA Expressway (2/2

VERTICAL ALIGNMENT		
Vertical Curve Radius		
Crest: Desirable minimum (m)	10,000	

Minimum (m)	6,500
SaG: Desirable minimum (m)	4,500
Minimum (m)	3,000
Minimum Vertical Length (m)	85
Minimum Stopping Site Distance (m)	160
Normal Crossfall (Cement Concrete Surfacing) (%)	2.00
Vertical Clearance (m)	5.10

1.3.2 Review of the 2006 Feasibility Study

1.3.2.1 Proposed Alignment by the 2006 FS

CALAX was studied in the JICA-assisted Feasibility Study and Implementation Support on the CALA East-West National Project.

The alignment recommended by the 200 FS is shown in **Figure 1.3.2-1**.

The recommended alignment starts at Eton/Greenfield Interchange (IC) of SLEX and goes westwards crossing Sta. Rosa – Tagaytay Road and reaches to Aguinaldo Highway. From there, it goes north-east direction and ends at Governor's Drive.

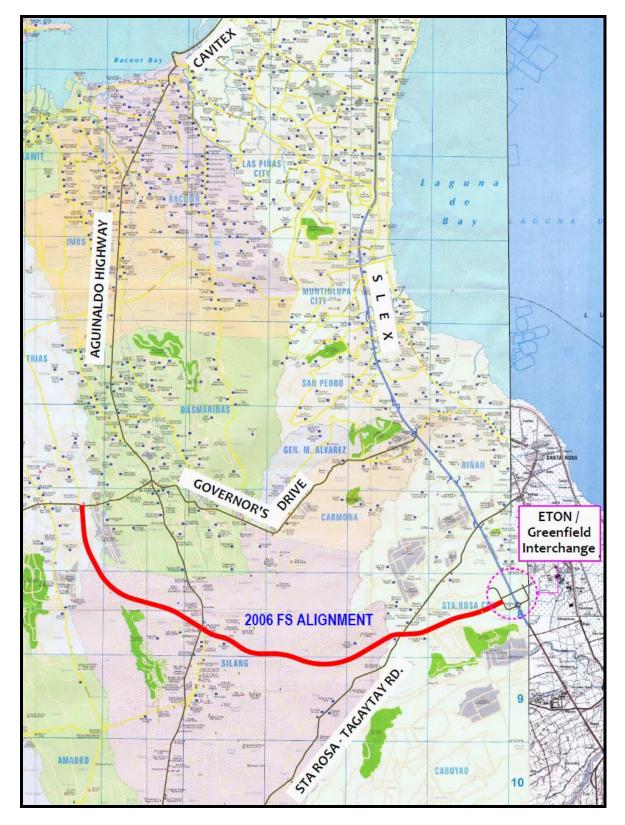


Figure 1.3.2-1 CALA Expressway Alignment Recommended by the 2006 FS

1.3.2.2 Objection to the Proposed Alignment by the Land Developers

Many land developers such as Eton Properties Philippines, Inc., Greenfield Development Corporation, and University of Sto. Tomas, etc., purchased the lands in the corridor from SLEX and Sta. Rosa – Tagaytay Road.

DPWH undertook the stakeholders meeting in 2006 and 2007 in order to realize the project, however, most land developers did not agree to the proposed alignment because their land development plan is severely affected. Thus, DPWH suspended the further actions for implementation.

Thus, the proposed alignment is required to be re-studied.

1.3.2.3 Engineering Concept

CALAX was planned as a national road and not as an access-controlled expressway, thus no toll facilities were planned, although grade separations at intersections with major roads were planned.

1.3.3 Alignment Study of CALA Expressway (Laguna Section)

1.3.3.1 Characteristics of Laguna Section Area

Land Area Acquired by Private Land Developers

Land area acquired by the private land developers is shown in **Figure 1.3.3-1**. Most of the lands of the project area have been purchased and owned by the large scale land developers (real estate companies).

There are many economic zones/industrial estates along SLEX and Governor's Drive. Residential subdivisions were and will be developed in the project area. Mixed uses area such as residential subdivision/commercial complexes/leisure facility (mostly golf courses) also widely occupy the project area. Areas along SLEX (4 to 5 km. areas from SLEX) has been and/or being developed.

Since land developments by private companies are quite active in the project area, most of the project area will be fully urbanized in 15 to 20 years.

Road Network in the Study Area

Road network in the project area is shown in **Figure 1.3.3-2**. Major roads are as follows:

- South Luzon Expressway (8-lane, toll road)
- Aguinaldo Highway (4-lane, national road)
- Governor's Drive (4-lane, national road)
- Sta. Rosa-Tagaytay Road (2 to 4-lane, National Road)

As shown above, national road network density is quite scarce. Private roads are providing access to the project area, however, there are following problems; ① Some of private roads are limited to vehicles with sticker sold by the private land developers, thus usage of private roads are limited and not for general public. ② Private roads are developed to provide access to each land developer's area, thus, continuity of road is not always good. Sometimes, it is not possible to go from one land developer's area to another.

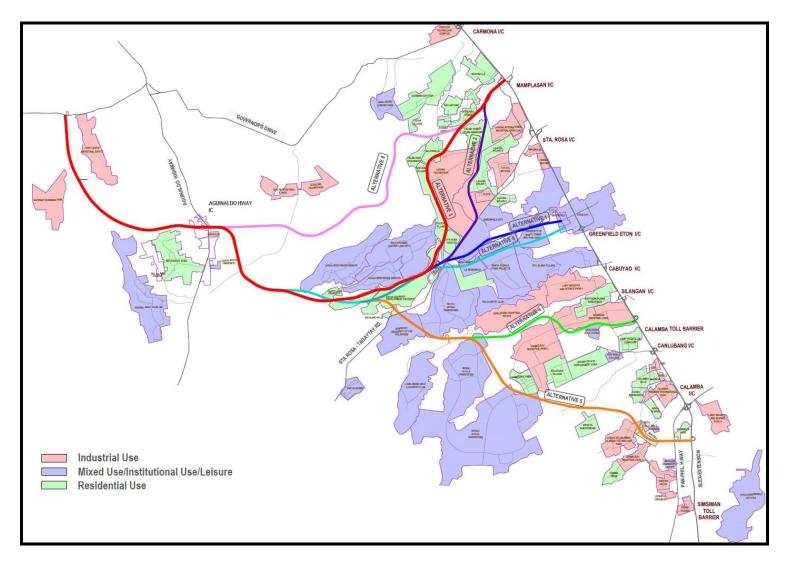


Figure 1.3.3-1 Land Area Acquired by Private Land Developers

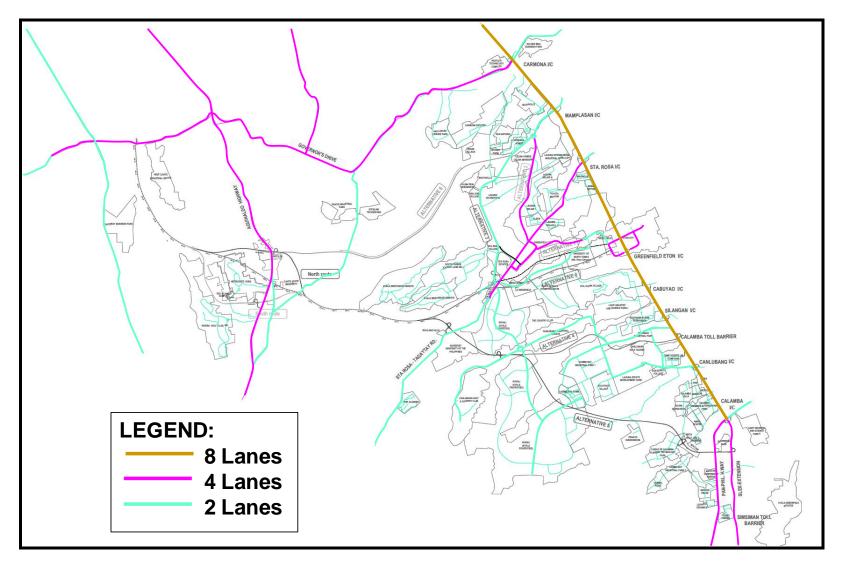


Figure 1.3.3-2 Road Network in the Study Area

Characteristics of the Project Area

Schematic development condition of the project area is shown in **Figure 1.3.3-3**. Characteristics are summarized as follows:

- ❖ Most of the lands of the area have been acquired by big private investors.
- ❖ Along SLEx, industrial zones and commercial, residential development is rapidly progressing.
- ❖ Even in remote areas from SLEx, housing lots are on sale.
- ❖ All developments are planned to have access to SLEx, which will be congested in the near future.
- ❖ Also, many developments plan to have access to Sta. Rosa-Tagaytay Road which is already experiencing traffic congestion

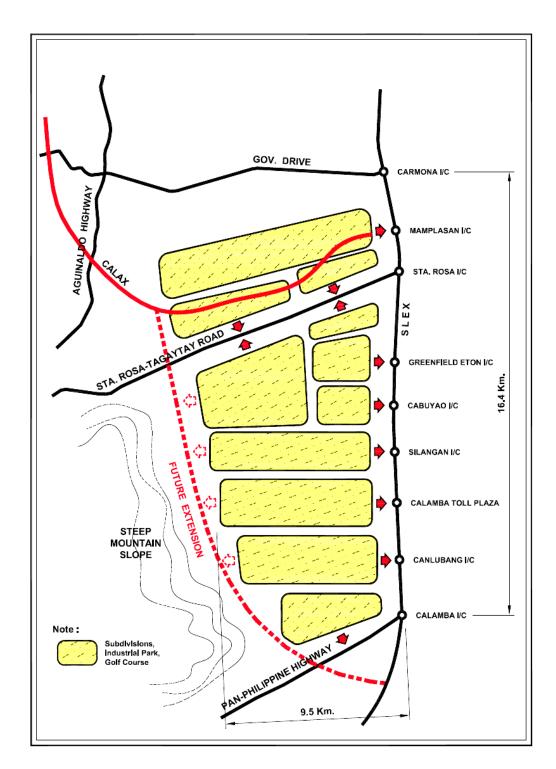


Figure 1.3.3-3 Schematic Development Condition

1.3.3.2 Procedure of Alignment Study

Alignment study was undertaken in accordance with the following steps;

Step-1 : Selection of the beginning point of Laguna Section (connection point of Cavite and Laguna sections).

Step-2 : Selection of the end point at SLEx.

Step-3 : Selection of the alignment to connect the beginning point and end point. Various alternative alignments were studied.

1.3.3.3 Selection of the Beginning Point of Laguna Section (Connection Point of Cavite and Laguna Sections) STEP 1

Three (3) alternative alignments were developed focusing on minimization of social impact (or dislocation of people) as shown in **Figure 1.3.3-4**.

Alternative-1 :Alignment Recommended by the 2006 FS

Alternative-2 :North Alignment to minimize social impact in the

northern area of Silang Municipality town proper.

Alternative-3 :South Alignment to minimize social impact in the

southern area of Silang Municipality town proper.

Three (3) alternative alignments were evaluated as shown in **Table 1.3.3-1** and Alternative-2 was recommended due to the following reasons:

- Alternative-2 achieves minimum social impact; and
- Alternative-2 achieves minimum cost

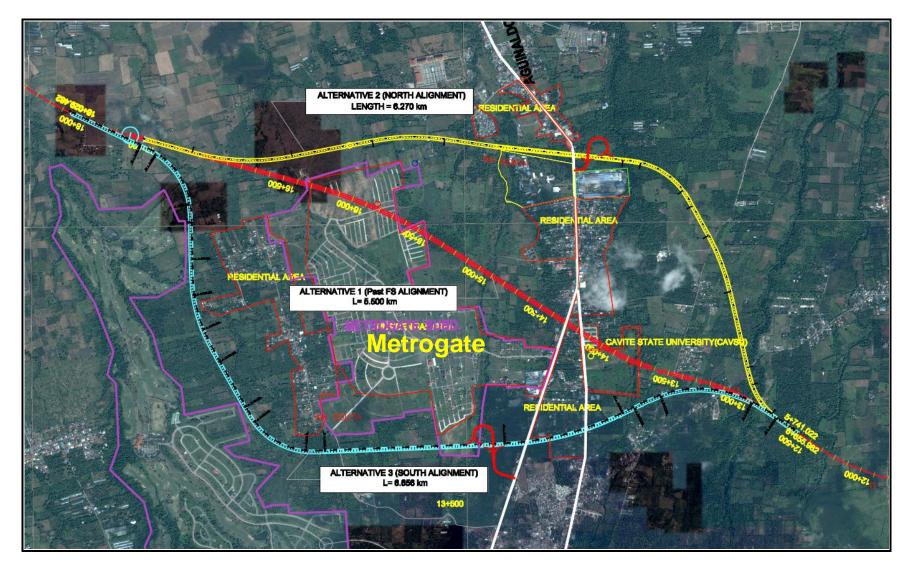
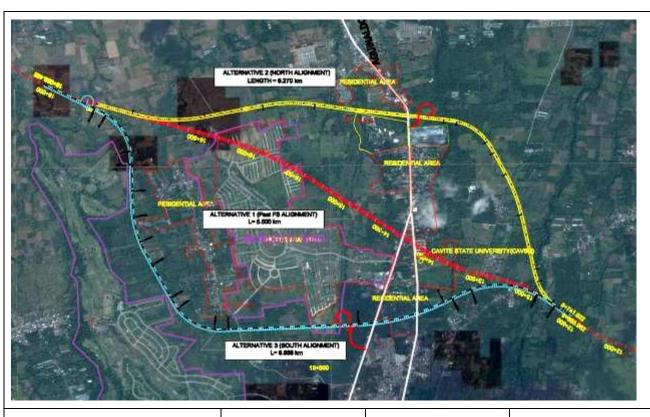



Figure 1.3.3-4 Alternative Alignments of Beginning Point of CALA Expressway Laguna Section

TABLE 1.3.3-1 EVALUATION OF ALTERNATIVE ALIGNMENTS AT BEGINNING POINT

Alter	Alternatives		Alternative 1		Alternative 2		Alternative 3	
Concept		Alignment proposed by 2006 FS To minimize social impacts in the northern area of Silang Municipality.		To minimize social impacts in the southerr area of Silang Municipality.				
Roa	Road Length (km)		5.50		6.27		6.66	
	Cost	Construction	0.798	Δ	0.910	0	0.966	Δ
	(Billion Pesos)	ROW	0.414		0.213		0.354	
		Total	1.212 (1.00)		1.123 (0.93)		1.320 (1.09)	
Evaluation	Connectio Highway	n to Aguinaldo	Difficult due to no appropriate area for interchange.	х	Easy to connect by trumpet type of interchange.	0	Easy to connect by trumpet type of interchange.	0
	Social Impact	No. of Residential Houses affected	38	х	17	0	44	х
		No. of Large Buildings affected	2 (Cavite State University)		0		0	
	Natural Er	nvironment	Same condition	0	Same condition	0	Same	0

	among alternatives. No serious problem.	among alternatives. • No serious problem.	condition among alternatives. No serious problem.
Evaluation	O 1	O 4	O 2
	Δ 1	Δ 0	Δ 1
	X 2	X 0	X 1
		Recommended	

1.3.3.4 Selection of the End Point at SLEX (STEP 2)

Existing Interchange Interval along SLEX

Many interchanges have been built along SLEX. **Table 1.3.3-2** and **Figure 1.3.3-5** show the existing interchanges in the project area along SLEX from Carmona Interchange to Simsiman Toll Barrier.

TABLE 1.3.3-2 EXISTING INTERCHANGES IN PROJECT AREA ALONG SLEX

Name of Interchange	Interval of Interchanges (km)
Carmona I/C	
	2.53
Mamplasan I/C	2 33
Sta. Rosa I/C	2.00
	4.00
Greenfield/Eton I/C	1.48
Cabyao I/C	
Silang I/C	1.46
	2.53 2.33 4.00 1.48 1.46
Calamba Toll Barrier (removed at present)	0.80
Canlubang I/C	0.00
	2.40
Calamba I/C	4.00
Simsiman Toll Barrier	
Simsiman Toll Barrier	

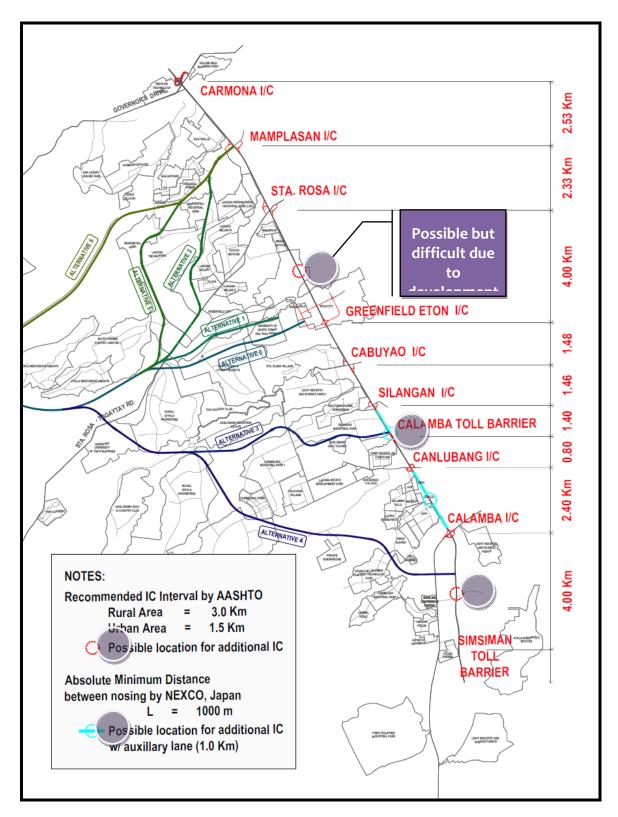


Figure 1.3.3-5 Existing Interchanges in the Study Area Along SLEX

Standard Minimum Interval Between Interchanges

Standard minimum interval between interchanges is recommended by AASHTO, as follows:

MINIMUM INTERVAL BETWEEN INTERCHANGES

• Rural Area = 3.0 km

• Urban Area = 1.5 km

In the Philippines, 2.0 km. is adopted for the minimum interval between interchanges.

When additional lane along the main line of expressway is added as an auxiliary lane, minimum nose to nose distance of 1 km. is accepted in Japan.

Possible Location to Construct New Interchange

Possible locations to construct new interchange between existing interchanges are as follows:

POSSIBLE LOCATION FOR NEW INTERCHANGE

- Between Sta. Rosa I/C and Greenfield/Eton IC
- Between Calamba I/C and Simsiman Toll Barrier
- At Calamba Toll Barrier (now removed) with auxiliary lane

Among the **three** (3) candidate locations, however, to construct new interchange between Sta. Rosa I/C and Greenfield/Eton I/C is quite difficult due to the following (see **Figure 1.3.3-6**):

- Eton Properties is now developing "South Lake Project"
- CALAX needs to be an elevated expressway over Sta. Rosa-Tagaytay Road, however, it has only 20 m road right-of-way and cannot accommodate an elevated expressway.
- Some other developments by Greenfield Development Corporation is on-going

Remaining candidate locations for new interchange are as follows:

- Between Calamba I/C and Simsiman Toll Barrier
- At Calamba Toll Barrier which was removed at present

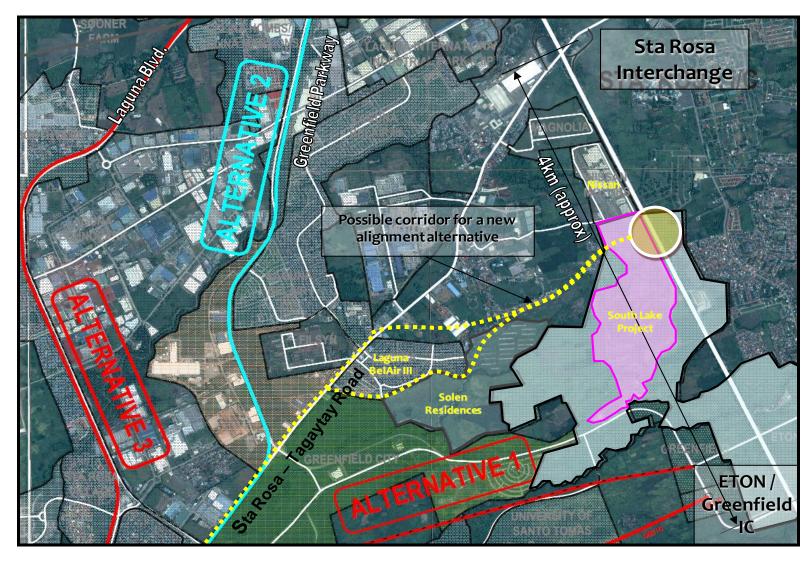


Figure 1.3.3-6 Development Condition between Sta. Rosa I/C and Eton/Greenfield I/C

Connection with Existing SLEX Interchanges

There are **two** (2) methods to connect CALAX with the existing SLEX Interchanges.

- a. CALAx is directly connected with SLEx at existing SLEx interchange. In this case, existing SLEx interchange must be converted to achieve direct connection between 2 expressways (this type is called as "Junction" in Japan). This requires drastic conversion of an existing interchange.
- b. CALAx and SLEx are indirectly connected through a public road between CALAx and SLEx. Improvement of an existing interchange is required such as installation of additional toll booths, improvement of intersections, and widening of some portions of ramps.

Direct Connection by Converting Existing Interchange

Two (2) examples are shown in Figure 1.3.3-7.

Example-1

- Existing road is to be shifted (which is quite difficult due to ROW acquisition) to maintain accessibility to neighboring establishments of an existing interchange.
- Another interchange is needed at about 2 km away from SLEx to provide accessibility to existing establishments near the existing interchange.

Example-2

- Wide road right-of-way of about 60 m is required (which is also difficult due to ROW acquisition)
- Diamond type of interchange is to be constructed at about 2 km from SLEx and U-turn slots are also needed to provide accessibility to existing establishments near the existing interchange.

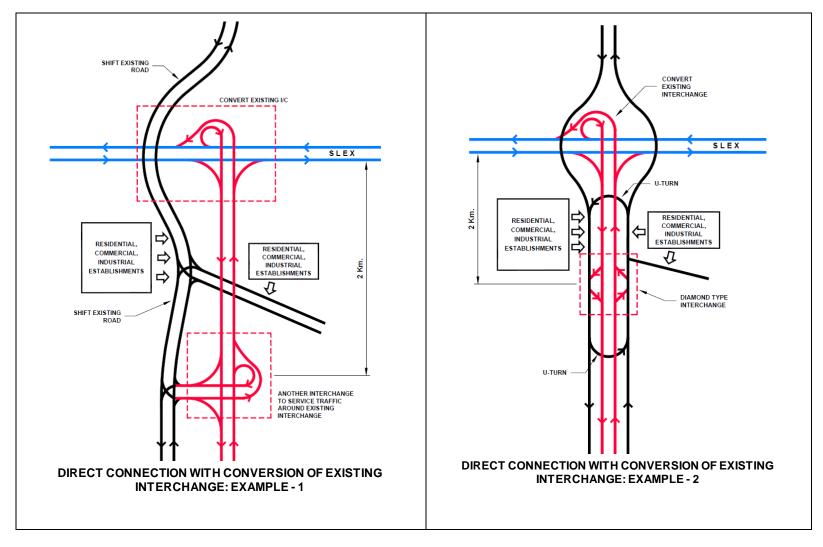


Figure 1.3.3-7 Examples of Direct Connection

In-Direct Connection by Improving Existing Interchange

In-direct connection means CALAX and SLEX is not directly connected; instead both expressways are connected via short section of public road. CALAx will end before reaching to SLEX and a gap between two expressways is connected by a public road as shown in **Figure 1.3.3-8**.

Demerit of this Scheme

- Continuity of travel on an expressway is interrupted; and
- Travel speed at the public road section is reduced, thus transport efficiency is affected.

Merit of this Scheme

- Existing and future establishments near the existing SLEx interchange can enjoy the present level of accessibility even during construction/improvement;
- No extensive ROW acquisition is needed;
- In case of Direct Connection Case, temporary closure of the existing interchange is required, however, this scheme does not require temporary closure of existing interchange; and
- Civil work cost is much cheaper than the direct connection scheme

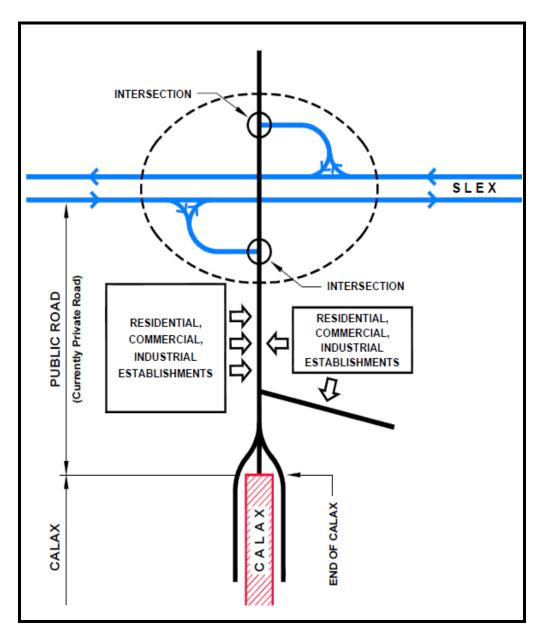


Figure 1.3.3-8 **Indirect Connection Via Public Road to Existing Interchange**

1.3.3.5 Alternative Alignments and Evaluation (STEP 3)

The beginning section was selected as discussed in **Section 1.3.3.3**. The end point has several alternatives as discussed in **Section 1.3.3.4** and the following points were selected as an alternative end point:

Alternative End Points (Connection with SLEX)

- Existing Mamplasan Interchange
- Existing Eton/Greenfield Interchange
- Old Calamba Toll Barrier
- New Location between Calamba Interchange and Simsiman Toll Barrier

Alternative Alignments

Six (6) alternatives were developed as shown in Figure 1.3.3-9.

Alternative-1

- This is the revised alignment of the 2006 FS and connected with the existing Eton/Greenfield Interchange;
- This route is the second shortest alignment among the alternatives; and
- Intended to capture generated traffic from the on-going and future development areas

Alternative-2

- End point is Mamplasan Interchange;
- Intended to utilize the existing private road of Greenfield Parkway (ROW width is 40 m.); and

• Intended to capture generated traffic from the existing, on-going and future development areas

Alternative-3

- Same concept as Alternative-2 above; and
- Intended to utilize the existing private road of Laguna Blvd. (ROW width is 60 m.)

Alternative-4

- End point is Calamba Toll Barrier which was shifted to Simsiman Toll Barrier of SLEx Extension, and new interchange is constructed; and
- Intended to capture generated traffic from the existing, on-going and future development areas.

Alternative-5

- End point is located at about the middle point between Calamba Interchange and Simsiman Toll Barrier and new interchange is constructed;
- This is the longest route among the alternatives;
- Intended to capture traffic from the existing, on-going and future development areas; and
- Generated traffic from the developing areas can utilize both CALAX and SLEX

Alternative-6

- This is the shortest route among the alternatives. However, it has to pass through steep slope areas; ansd
- This route functions as a bypass route of Governor's Drive

Each alignment of alternatives is shown in **Figures 1.3.3-10 (1) to (6)**.

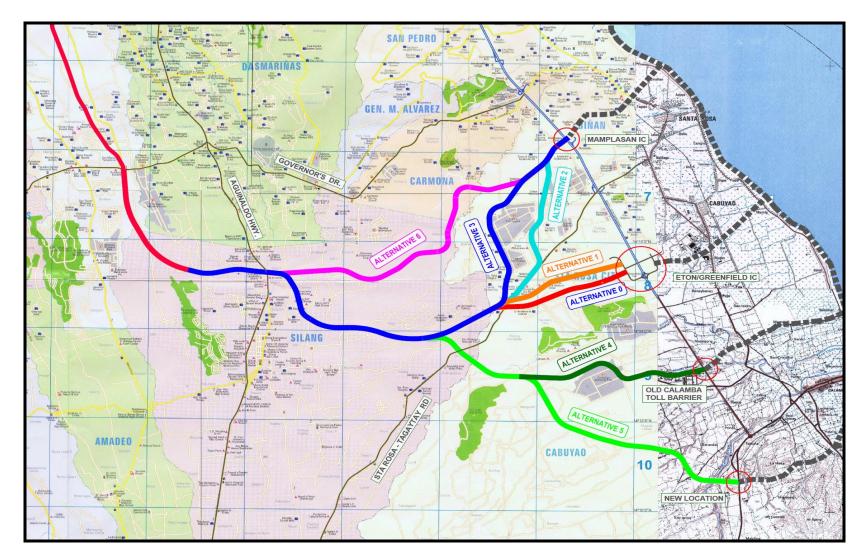


Figure 1.3.3-9 Alternative Alignments

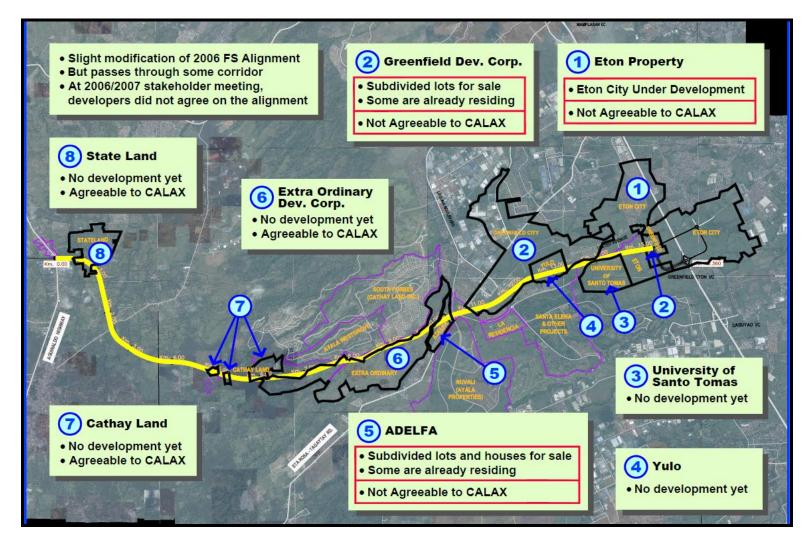


Figure 1.3.3-10 (1) Alternative Alignment 1

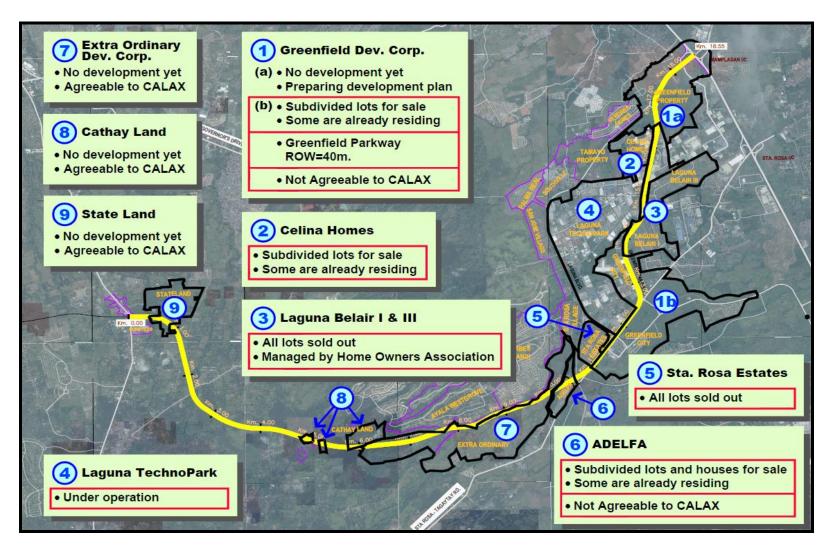


Figure 1.3.3-10 (2) Alternative Alignment 2

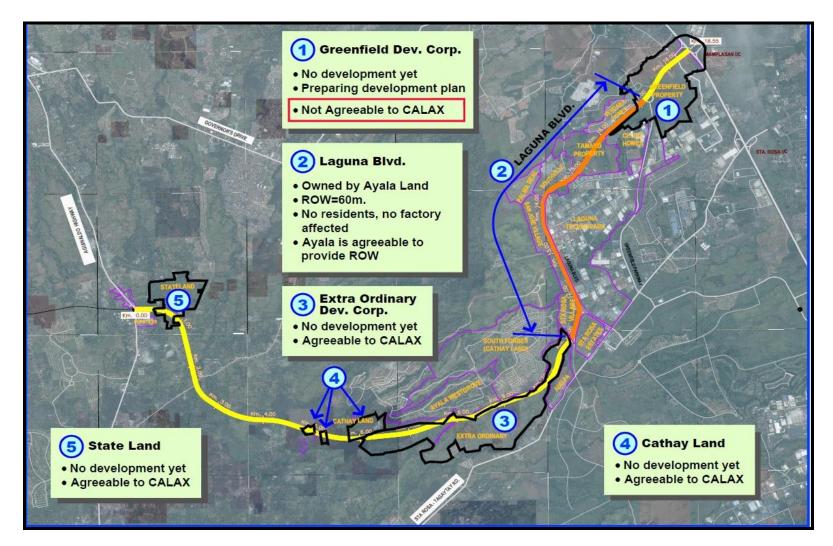


Figure 1.3.3-10 (3) Alternative Alignment 3

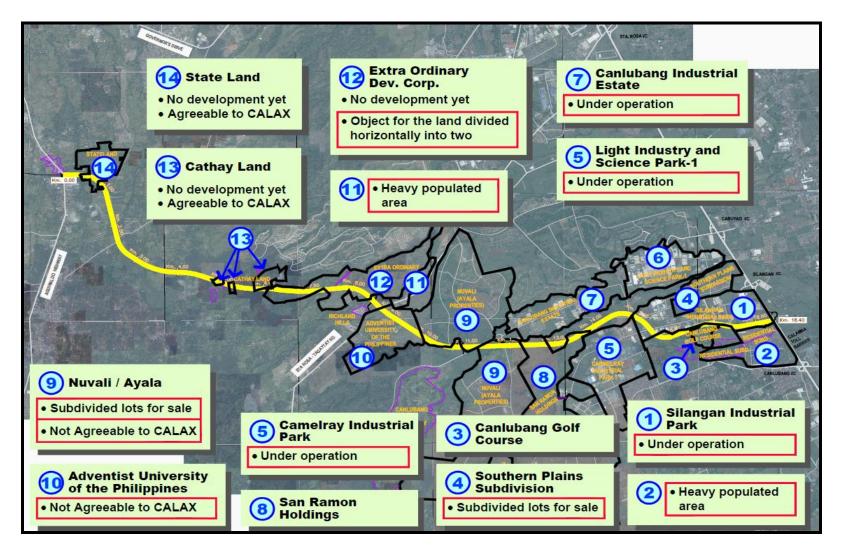


Figure 1.3.3-10 (4) Alternative Alignment 4

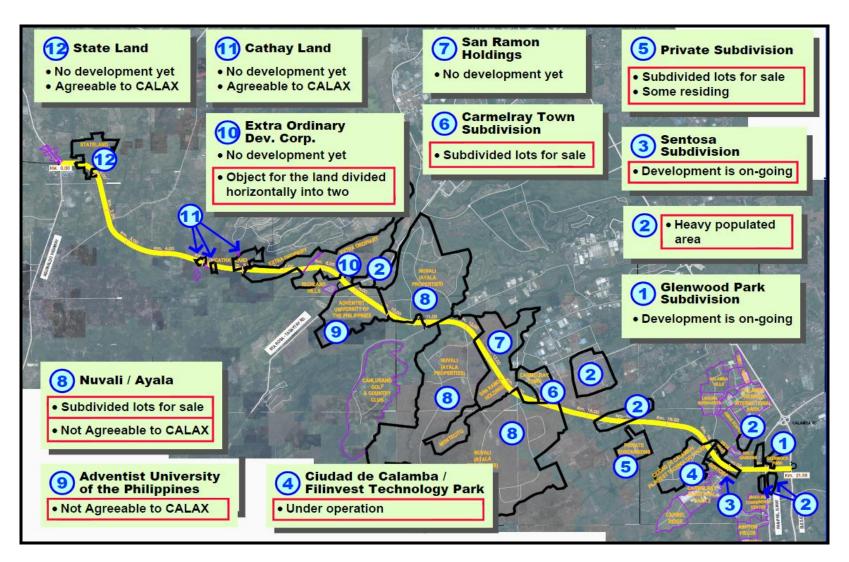


Figure 1.3.3-10 (5) Alternative Alignment 5

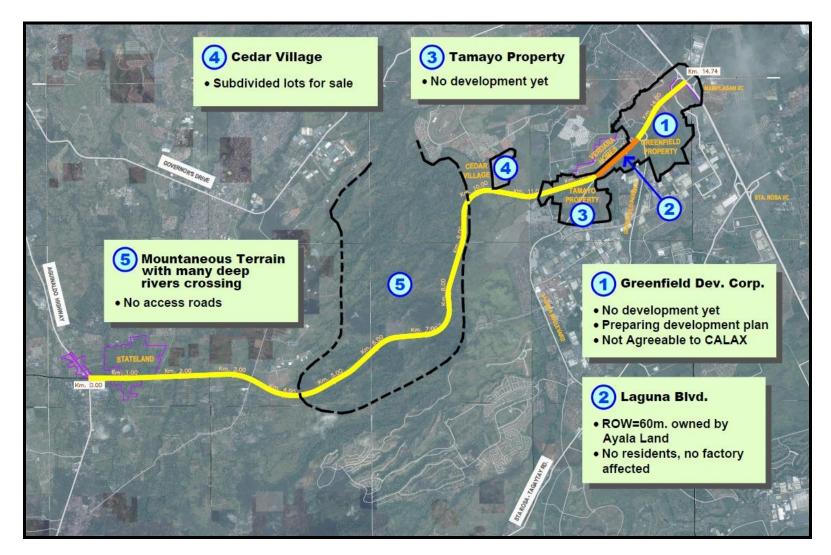


Figure 1.3.3-10 (6) Alternative Alignment 6

Civil Work Component and Cost Estimate

Civil work component of each alternative is shown in Table 1.3.3-3. Since all alternatives pass through urbanized/to be urbanized area, viaduct type was planned.

TABLE 1.3.3-3 CIVIL WORK COMPONENT OF ALTERNATIVES

Alternativ	Length		Cost (Mil	lion Pesos)		No. of IC
е	(km.)	Roadway	Bridge	MSE Wall	Viaduct	110.0110
1	16.4	10.20	1.49	2.90	1.81	3
'	(100%)	(62%)	(9%)	(18%)	(11%)	3
2	18.6	10.00	1.09	2.40	5.11	4
2	(100%)	(54%)	(6%)	(13%)	(27%)	4
3	18.6	10.50	1.09	2.20	4.81	4 + 1/2
3	(100%)	(81%)	(6%)	(12%)	(26%)	4 + 1/2
4	18.4	10.80	1.69	1.60	.60 4.31	3
4	(100%)	(59%)	(9%)	(9%)	(23%)	3
5	21.6	13.40	2.09	3.00	3.11	3
5	(100%)	(62%)	(10%)	(14%)	(14%)	3
6	14.8	8.58	3.29	1.60	1.33	3
6	(100%)	(58%)	(22%)	(11%)	(9%)	3

Civil work cost and right-of-way acquisition cost were roughly estimated and shown in **Table 1.3.3-4** and **Figure 1.3.3-11**.

TABLE 1.3.3-4 ESTIMATED COST OF ALTERNATIVES

Alternative	Length	Cost Cost per Km (Million Pesos) (Million Pesos)					
Alternative	(km.)	Civil Work	ROW	Total	Civil Work	ROW	Total
1	16.4	10,056 (65.5%)	5,303 (34.5%)	15,359 (100%)	613	323	937
2	18.6	13,196 (76.2%)	3,975 (23.8%)	17,171 (100%)	709	214	923
3	18.6	12,700 (80.5%)	2,962 (19.5%)	15,662 (100%)	683	159	842
4	18.4	12,484 (74.2%)	4,419 (25.8%)	16,903 (100%)	678	240	919
5	21.6	13,152 (74.2%)	4,581 (25.8%)	17,733 (100%)	609	212	821
6	14.8	11,869 (83.2%)	2,391 (16.8%)	14,260 (100%)	802	162	964

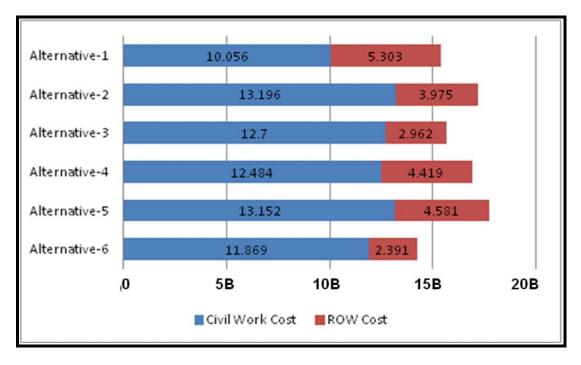


Figure 1.3.3-11 Cost Estimate of Alternatives

Traffic Volume Attracted to Expressway

Traffic volume in 2020 was estimated as shown in **Table 1.3.3-5**.

TABLE 1.3.3-5 TRAFFIC VOLUME ATTRACTED TO CALAX (YEAR 2020)

Alternative	Length (km)	Traffic Volume which Enter CALAX per Day	Average Section Traffic Volume per Day	Vehicle-km per Day	Average Trip Distance (km)
1	16.4	48,500	36,800	609,100	12.6
2	18.6	53,900	31,400	548,100	10.2
3	18.6	57,600	34,300	576,800	10.0
4	18.4	58,500	30,600	591,300	10.1
5	21.6	52,200	28,500	643,200	12.3
6	14.8	37,100	27,100	434,200	11.7

Characteristics of Alternatives

Characteristics of alternatives are summarized in Table 1.3.3-6.

TABLE 1.3.3-6 CHARACTERISTICS OF ALTERNATIVES

Alternatives		Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Expressway Distance (km)		16.4	18.6	18.6	18.4	21.6	14.8
SLEX Connection		Greenfield/ Eton Interchange (direct or indirect connection)	Mamplasan Interchange (direct or indirect connection)	Existing Mamplasan Interchange (direct or indirect connection)	New Interchange (direct connection)	New Interchange (direct connection)	Existing Mamplasan Interchange (direct or indirect connection)
Road Structure	Road Section	10.2 km	10.0 km	10.5 km	10.8 km	13.4 km	8.6 km
	Bridge/ Viaduct	3.3 km	6.2 km	5.9 km	6.0 km	5.2 km	4.6 km
	MSE Wall	2.9 km	2.4 km	2.2 km	1.6 km	3.0 km	1.6 km
Cost (M Php)	Civil Work	10,056	13,196	12,700	12,484	13,152	11,869
	ROW	5,303	3,975	2,962	4,419	4,581	2,391
	Total	15,359	17,171	15,662	16,903	17,733	14,260
Estimated Traffic Volume	Volume (veh/ day)	48,500	53,900	57,600	58,500	52,200	37,100
(2020)	Vehkm.	609,100	548,100	576,800	591,300	643,200	434,200
Cost Performance	e	39.7	31.9	36.8	35.0	36.3	30.4
Utilization of Private Road ROW which is to be acquired by DPWH		-	Greenfield Parkway W = 40 m L = 4.4 km (1/4 of total length, but widening is required.)	Laguna Blvd. W = 60 m L = 6.2 km (1/3 of total length, and no widening is required.)	-	-	-
Residential Subdivision Affected	Already Residing	1.4 km	3.5 km (one-side) 1.8 km (both-side)	-	-	-	-

Alterna	atives	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
	Lots for Sale	2.2 km	-	-	2.8 km	6.2 km	1.0 km
Industrial Estate Affected	Under Operation	-	1.0 km (one-side only)	-	2.2 km	0.2 km	-
University Affect	ed	University of Sto. Tomas (UST)	-	-	Adventist University of the Philippines (AUP)	Adventist University of the Philippines (AUP)	-
Status of Land Development of Each Developer	People already residing	Adelfa /Fine Properties Inc.	VALENZA Sta. Rosa Estate Greenfield City Laguna Bel-Air I & II	Ayala Land Corp. (only Private Road ROW will be utilized, thus no one will be dislocated.	-	-	Ayala Land Corp. (only Private Road ROW will be utilized, thus no one will be dislocated.
	Lots for sale	Greenfield Development Corp. MESSA Homes	Greenfield Development Corp.	-	Ayala/Nuvali Properties Inc.	 Ayala/Nuvali Properties, Inc. Sentosa, Inc. Greenwood Park, Inc. 	Tamayo Property, Inc.
	No Development Yet	 Stateland, Inc. Cathay Land, Inc. Extraordinary Development Corporation Eton Properties 	Stateland Inc. Cathay Land, Inc. Extraordinary Development Corporation Greenfield Development Corporation	 Stateland Inc. Cathay Land, Inc. Extraordinary Development Corporation Greenfield Development Corporation 	Stateland Inc. Cathay Land, Inc. Extraordinary Development Corporation San Ramon Holdings, Inc.	Stateland Inc. Cathay Land, Inc. Extraordinary Development Corporation San Ramon Holdings, Inc. Carmelray Town	Stateland Inc. Greenfield Development Corporation
Industrial Estate	in operation		Laguna Techno Park	Laguna Techno Park (property is not affected)	Silangan Industrial Park	Filinvest Technology Park	

Evaluation of Alternatives

Two (2) evaluation methods were tested to evaluate alternatives as follows:

Met	hod-1 :	: Relative superiority of an alternative (Table 1.3	. 3-7).
		All evaluation items were equally evaluated.	
		Relative superiority among alternatives	
		Good : O	
		Medium: \triangle	
		Bad : X	
"Go	od, O"	Superiority of an alternative was evaluated by	number of
Met	hod-2 :	Evaluation by Weight Method.	
		Evaluation items were given weight.	
		Each item was also rated. An alternative which points	got highest
		was recommended.	
a) Cont		ive Superiority Evaluation to improvement of accessibility to the Projec nent	t Area and
a) Cont	ribution Developm Whether	to improvement of accessibility to the Projec	
a) Cont	Develop Whether develop	to improvement of accessibility to the Projec nent r CALAX passes through an existing, on-going	
a) Cont	Whether develops	to improvement of accessibility to the Projec ment r CALAX passes through an existing, on-going ment area;	or proposed
a) Cont	Whether develops - 1	to improvement of accessibility to the Projectment r CALAX passes through an existing, on-going oment area; More than 70% of section	or proposed
a) Cont Area	Whether develops - 1	to improvement of accessibility to the Projectment r CALAX passes through an existing, on-going oment area; More than 70% of section	or proposed Ο Δ
a) Cont Area	Whether develops - 1 - 2 - 1	to improvement of accessibility to the Projectment r CALAX passes through an existing, on-going oment area; More than 70% of section	or proposed Ο Δ

c) Traffic Volume Attracted

When higher traffic is attracted, it contributes more to reduce traffic congestion of public roads and the project is economically and financially feasible, thus an alternative which attract higher traffic is evaluated better than other alternatives.

•	More than 50,000 veh./day	0
•	40,000 to 50,000 veh/day	Δ
•	Less than 40,000 veh/day	X

d) Cost (Civil Work Cost + ROW Acquisition Cost)

Smaller cost is better for the project. When the smallest cost is set as 1.00, increase rate of other Alternative was evaluated as follows:

Cost Ratio

1.0 to 1.10	0
1.10 to 1.20	Δ
Over 1.20	X

e) Impact on Natural Environment

Major natural environmental impact of this project will be soil erosion and loss of greenery.

e-1) Soil Erosion

The project area is prone from slight to moderate soil erosion, depending on the gradient of land slope. Since slope cutting will affect soil erosion, thus evaluation indicator used is the volume of slope cutting.

Large scale of slope cut (over 500,000 m ³) required	X
Medium scale of slope cut (200,000 to 500,000 m ³) required	Δ
Small scale of slope cut (less than 200,000 m ³) required	0

e-2)	Loss	of	Greenery

Loss of greenery is evaluated as the quantity of cut trees.

A large number of trees are cut	X
Medium number of trees are cut	Δ
Small number of trees are cut	0

f) Social Impact

Evaluation by the number of houses to be affected.

10 or less houses	0
10 to 30 houses	Δ
Over 30 houses	X

g) Cost Performance

Cost performance = veh.km/cost in Million Php

High Efficiency	over 35	0
Medium Efficiency	30 to 35	Δ
Low Efficiency	less than 30	X

h) Easiness of Implementation (ROW Acquisition)

Development status of properties of land development companies is different and can be classified as follows:

- Lots were sold out and some people are already residing; (a)
- (b) Lots are being sold; and
- (c) No development is made yet

Those who bought a lot sold by the land development companies were not informed that an expressway will be built and their properties may be affected by the project. Therefore, it will take a longer time to negotiate with these people,

and DPWH will have a hard time to acquire the road right-of-way. Evaluation was made as follows:

•	Lots are not affected or land development has not started yetO
•	Some lots are being sold Δ
•	Many lots have been sold out or are being sold
	and some people are already residing X

i) Easiness of Construction

This was evaluated as follows:

- Construction of access road itself is difficult due to terrain, and construction can start only at the beginning side and end side ...

TABLE 1.3.3-7 EVALUATION OF ALTERNATIVES: METHOD-1

	Evelveties	. Itaua	Alternatives											
	Evaluation Item		1		2		3		4		5		6	
a)	Contribution improvement accessibility	ent of	Pass through development area	0	Pass through development area	0	Pass through development area	0	Pass through development area	0	Pass through development area	0	Pass through steep slope area	Х
b)	Connection SLEX	n with	Indirect	Δ	Direct or indirect	Δ	Direct or indirect	Δ	Direct	0	Direct	0	Direct or indirect	Δ
c)	Traffic Attracted	Volume	48,500	Δ	53,900	0	57,600	0	58,500	0	52,200	0	37,100	Х
d)	Cost		15,359 (1.08)	0	17,171 (1.20)	Х	15,662 (1.10)	0	16,903 (1.19)	Δ	17,333 (1.24)	Х	14,260 (1.00)	0
e)	Impact on Natural	Slope Cutting	Medium Scale (380,000 m ³)	Δ	Medium Scale (380,000 m ³)	Δ	Medium Scale (380,000 m ³)	Δ	Medium Scale (380,000 m ³)	Δ	Medium Scale (380,000 m ³)	Δ	Large Scale (750,000 m ³)	Х
	Environ ment	Tree Cutting	Medium Number	Δ	Medium Number	Δ	Medium Number	Δ	Medium Number	Δ	Medium Number	Δ	Large Number	Х
f)	Social Imp	act	20 houses	Δ	30 houses	Δ	10 houses	0	40 houses/factory	Х	60 houses	Х	10 houses	0
g)	Cost Perfo	rmance	39.7	0	31.9	Δ	36.8	0	34.9	Δ	36.3	0	30.4	Δ
h)	Easiness Implement (ROW acq		3.6 km	Х	6.3 km	Х	-	0	5.0 km	Х	6.4 km	Х	1.0 km	Δ
i)	Easiness Construction	of on	Easy	0	Easy	0	Easy	0	Easy	0	Easy	0	Difficult	Х
Evaluation		O : 4	•	O : 3		0 : 7		O : 4		O : 5		O : 2		
		uation Δ : 5			Δ : 5		Δ : 3		Δ : 4		Δ : 2		Δ : 3	
		X : 1		X : 2		X : 0 [Recommended	d]	X : 2		X : 3		X : 5		

Method-2: Evaluation by Weight Method

Weight of each evaluation item and rating method is shown in Table 1.3.3-8.

Evaluation of alternatives is shown in **Table 1.3.3-9**.

TABLE 1.3.3-8 EVALUATION CRITERIA: METHOD-2

	Evaluat	ion Item	Weight	Rating Method
a)) Contribution to improvement of accessibility		5	• Relative Rating Good
b)) Connection with SLEX		2.5	Direct connection
c)	Traffic Volume		10	Max : 58,000
d)	Cost		25	Min : 14,260
e)	Impact on Environmen t	Soil Erosion(Slope cutting)	7.5	Relative rating Medium scale
		Loss of Greenery (Tree cutting)	7.5	Relative rating Medium number
f)	Social Impact		15	Min : 10
g)	Cost Performa	ance	10	Max : 39.7
h)	n) Easiness of Implementation (ROW acquisition)		15	Min : 0 km
i)	i) Easiness of Construction		2.5	Relative rating Easy
	Total	_	100	

TABLE 1.3.3-9 EVALUATION OF ALTERNATIVES: METHOD-2

	Fuel	uation Item	Weight						Alterna	atives					
	Evai		1 2		3 4		5		6						
a)	Contribution accessibility	on to improvement of ty	5.0	Pass through developm ent area	5.00	Pass through developme nt area	5.00	Pass through developme nt area	5.00	Pass through developm ent area	5.00	Pass through developm ent area	5.00	Pass through steep slope area	3.00
b)	Connectio	n with SLEX	2.5	Indirect	1.00	Direct or indirect	1.50	Direct or indirect	1.50	Direct	2.50	Direct	2.50	Direct or indirect	1.50
c)	Traffic Vol	ume Attracted	10.0	48,500	7.66	53,900	8.93	57,600	9.79	58,500	10.00	52,200	8.53	37,100	5.00
d)	Cost		25.0	15,359	20.25	17,171	12.43	15,662	18.94	16,903	13.58	17,733	10.00	14,260	25.00
e)	Impact on Natural Environ ment	Soil Erosion (Slope Cutting)	7.5	Medium Scale (380,000 m ³)	7.50	Medium Scale (380,000 m ³)	7.50	Medium Scale (380,000 m ³)	7.50	Medium Scale (380,000 m ³)	7.50	Medium Scale (380,000 m ³)	7.50	Large Scale (750,000 m ³)	2.00
	mem	Loss of Greenery (Tree Cutting)	7.5	Medium Number	7.50	Medium Number	7.50	Medium Number	7.50	Medium Number	7.50	Medium Number	7.50	Large Number	2.00
f)	Social Imp	act	15.0	20 houses	13.00	30 houses	11.00	10 houses	15.00	40 houses/ factory	9.00	60 houses	5.00	10 houses	15.00
g)	Cost Perfo	ormance	10.0	35.5	10.00	31.9	5.81	36.8	8.44	35.0	7.47	36.3	8.17	22.4	5.00
h)	Easiness (ROW acq		15.0	3.6 km	10.63	6.3 km	5.16	-	15.00	5.0 km	7.19	6.4 km	5.00	1.0 km	13.44
i)	Easiness	of Construction	2.5	Easy	2.50	Easy	2.50	Easy	2.50	Easy	2.50	Easy	2.50	Difficult	1.00
To	tal Score		100.0	85.04	4	67.33	}	91.17 [Recommen	ded]	72.24	4	61.7	0	74.94	1

Recommendation

Results of evaluation by both methods show that Alternative-3 is the most preferable alternative. Advantages of Alternative-3 are as follows:

- Cost is within 10% increase compared to the minimum cost alternative (Alternative-6). (Alternative-6 attracts least traffic). Second lowest alternative (Alternative-1) and Alternative-3 is almost the same cost.
- High traffic volume is attracted. Alternative-3 attracts the 2nd highest traffic. Highest is Alternative-4 and difference is 900 vehicle per day (or 1.6% difference).
- Social impact in terms of dislocation of people is the smallest.
- Since this alternative utilizes the 60m ROW of existing private road (for about 1/3 of the total expressway length), implementation in terms of ROW acquisition is the easiest and the fastest.
- Other alternatives affect people who have newly acquired a lot from the private land developers. When they bought their lots, they were not informed that their lots will be affected in the future by this project. Therefore, their life plan will have a drastic change. On the part of DPWH, ROW acquisition negotiation will take time.

In view of the above, Alternative-3 was recommended.

1.3.4 Estimated Traffic on Expressway

1.3.4.1 Existing Traffic Volume

FIGURE 1.3.4-1 shows the traffic volumes of the road network in Cavite area and some portions of Laguna province. The number denotes vehicles. The following were observed regarding the captured traffic volume:

 Traffic volume at the section of SLEX inside Metro Manila is extremely high compared to the sections outside of Metro Manila indicating that there are high numbers of vehicles using the expressway having their OD within Metro Manila.

- There is also a very high volume of vehicles between Metro Manila and coastal towns of Cavite which is served by the Manila-Cavite Expressway. These towns along with other towns within the periphery of Metro Manila are functioning as residing place of workers in the capital.
- Likewise, traffic volume at the trunk roads like Aguinaldo Highway and Governor's Drive is
 also high especially at the sections of these roads passing urban areas like in Dasmariñas City
 and Gen. M. Alvarez, and Carmona. Through traffic and local traffic like jeepneys and tricycles
 merges at this road section.

1.3.4.2 Existing Travel Speed

The travel time of selected routes are depicted in **FIGURE 1.3.4-2**. General observation appears that serious traffic congestion is experienced while the national road is passing a city center or the area has substantial number of economic zones and industrial parks. Congestion is also experienced when a road is about to merge with another important road.

1.3.4.3 Toll Rate vs. Revenue

In order to set the proper toll rate of CALAX, the traffic volume and the amount of revenue are estimated by traffic assignment model. **FIGURE 1.3.4-3** shows the result of traffic assignment of toll rate in year 2011.

- In case of toll free, total traffic volume to enter CALAX is 69,316 vehicles/day
- The toll rate for getting higher revenue is about 4 to 15 Peso/km and the amount of revenue is about 3.7 and 4.2 million Peso/day. Although maximum amount of revenue is 10 peso case, traffic volume to enter CALAX is only 19,819 vehicle /day which is about 30% of toll free case.
- The desirable toll rate for attractive to motorist and higher revenue is 4.0 Peso/km. Total traffic volume to enter CALAX is 41,567 vehicle/day (60% of toll free case). This toll rate is the almost same as that of Manila Cavite Toll Expressway (herein CAVITEX) phase-1 and it is cheaper than that of other new present expressways such as CAVITEX Phase-2 and Skyway Phase-2. Most motorists may still accept the 4.0 peso/km in year 2011.

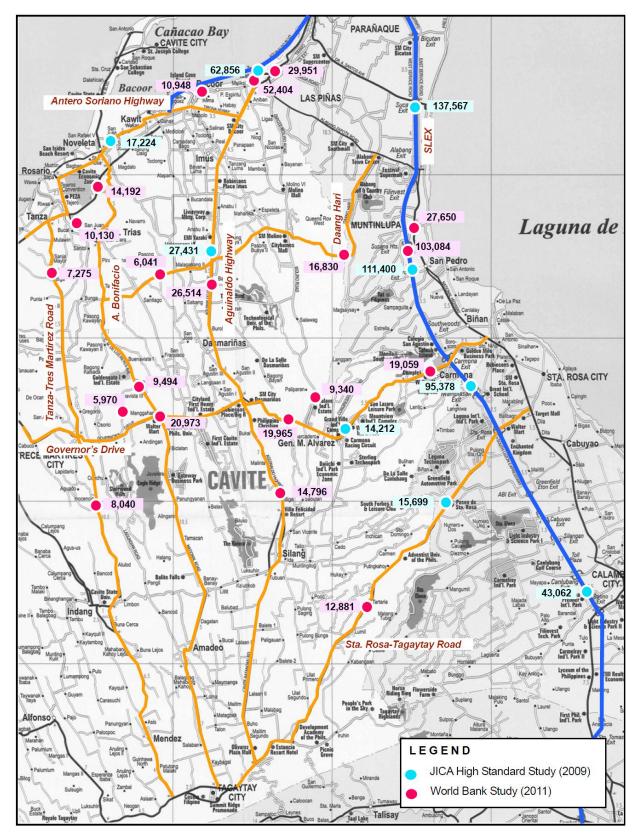


Figure 1.3.4-1 Existing Traffic Volume

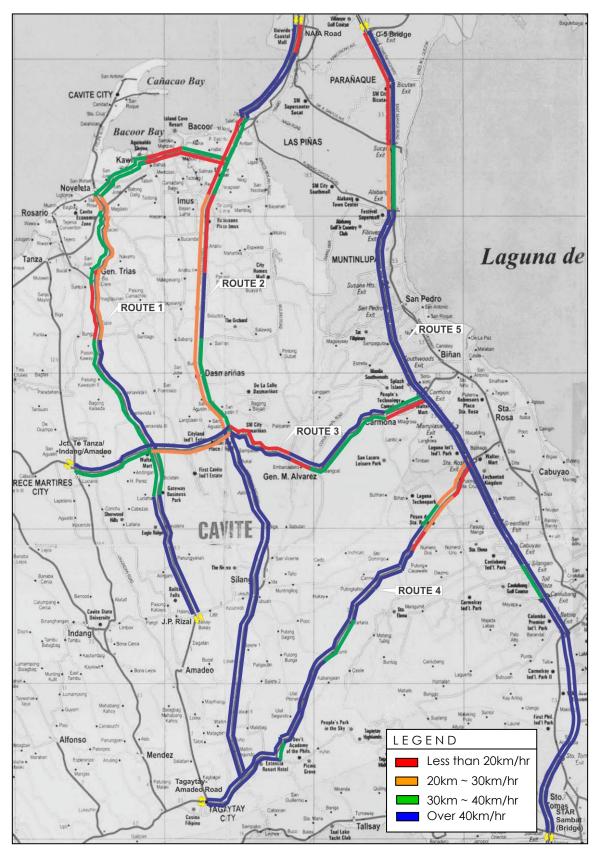


Figure 1.3.4-2 Travel Speed of Major Corridors In The South of Metro Manila (Afternoon Peak Hours)

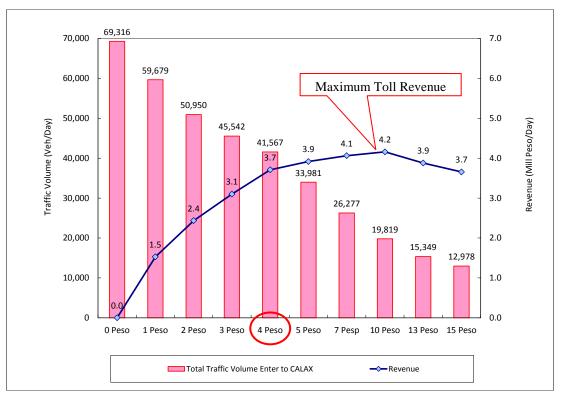


Figure 1.3.4-3 Toll Rate Vs Revenue (CALAX, Year 2011)

1.3.4.4 Estimated Traffic on Expressway

Figures 1.3.4-4 to **1.3.4-6** show the estimated traffic volume of CALAX Laguna section. The highest traffic volume interchange section is between Sta.Rosa-Tagaytay IC and Laguna Blvd. IC, which number of traffic are 23,208 (vehicle/day) in year 2017, 31,122 (vehicle/day) in year 2020 and 48,796 (vehicle/day) in year 2030.

TABLE 1.3.4-1 shows the total traffic volume to enter CALAX Laguna section and total vehicle km of CALAX Laguna Section.

TABLE 1.3.4-1 Traffic Volume And Vehicle Km (CALAX Laguna Section)

Item	Vehicle Class	Year 2017	Year 2020	Year 2030
Traffic Volume	Class 1	22,595	31,108	60,091
(Veh./day)	Class 2	8,143	9,712	14,870
	Class 3	3,845	4,347	5,855
	Total	34,583	45,167	80,816

Item	Vehicle Class	Year 2017	Year 2020	Year 2030
Vehicle*km	Class 1	204,109	275,222	510,503
	Class 2	87,460	106,403	151,367
	Class 3	45,718	53,809	73,808
	Total	337,287	435,434	735,678
Toll Revenue (Million Php/day)	All classes	2.8	4.0	10.5

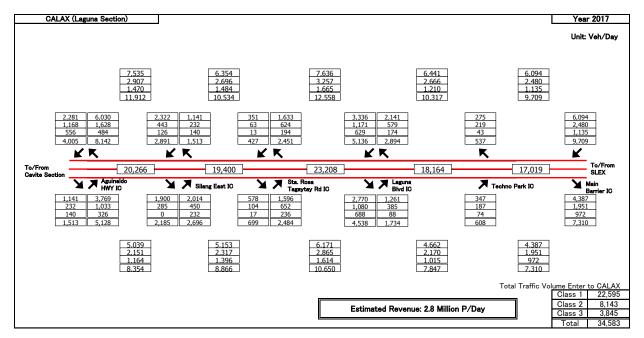


Figure 1.3.4-4 Traffic Projection (Year 2017) of CALAX Laguna Section

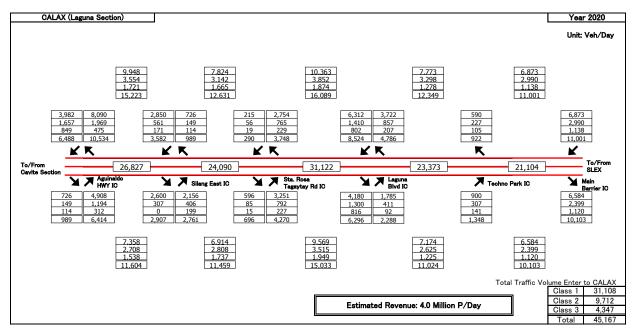


Figure 1.3.4-5 Traffic Projection (Year 2020) of CALAX Laguna Section

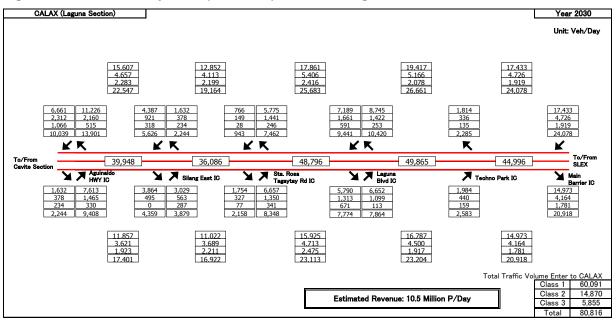


Figure 1.3.4-6 Traffic Projection (Year 2030) of CALAX Laguna Section

1.4 PROJECT COMPONENTS

The proposed CALA Expressway Project is consists of the following major components:

- 4-Lane Expressway Length = 18.10 km;
- Interchanges, 4;
- Elevated Section, Length = 5.04 km;
- Road Crossing, 5; and
- Toll Barrier, 1

1.5 TECHNOLOGY OPTIONS

The project does not require any special technology and ordinary technologies adopted in the Philippines can be utilized.

The project will be divided into two contract packages as follows;

Contract Package 1 : Km. 0+690 ~ Km. 10+600 (L=9.91 km) Contract Package 2 : Km. 10+600 ~ Km. 18+810 (L=8.21 km)

Major quantities required by each contract package is shown in **Table 1.5-1.** Major material requirement is shown in **Table 1.5-2.** Major equipment to be used is shown in **Table 1.5-3.**

Table 1.5-1 Major Quantities By Contract Package

		T T •	Quan		
	Items	Unit	Package 1	Package 2	Total
1.00	Earthworks				
1.10	Roadway Excavation	cu.m	925,455.00	-	925,455.00
1.20	Embankment from Roadway Excavation	cu.m	582,501.00	342,954.00	925,455.00
2.00	Subbase and Base Course				
2.10	Aggregate Subbase Course	cu.m	91,898.00	108,703.00	200,601.00
2.20	Crushed Aggregate Base Course	cu.m	64,852.00	17,245.00	82,097.00
2.30	Cement Treated Base Course	cu.m	30,647.00	10,119.00	40,766.00
3.00	Surface Course				-
3.10	Bitumimous Concrete Binder Course (t=60mm)	sq.m	257,008.00	67,621.00	324,629.00
3.20	Bitumimous Concrete Surface Course (t=60mm)	sq.m	270,997.00	187,893.00	458,890.00
4.00	Bridge Structure				
4.10	Concrete Piles Cast in Drilled Holes (Ø1800mm)	l.m	2,406.00	7,783.00	10,189.00
4.20	Reinforcing Steel, Grade 60 (Bridge)	kg	15,989,512.00	23,895,495.00	39,885,007.00
4.30	Structural Concrete Class P38MPa for Coping	cu.m	8,603.00	26,049.00	34,652.00
4.40	Structural Concrete Class AA for Deck Slab	cu.m	18,184.97	39,725.03	57,910.00
4.50	Structural Concrete Class AA for Abutment	cu.m	7,038.40	1,936.60	8,975.00
4.60	AASHTO Girder Type V, L=35m	each	567.00	1,087.00	1,654.00
4.70	Structural Steel	kg	238,256.00	-	238,256.00
5.00	Drainage and Slope Protection Structure				
5.10	RCPC (Ø610mm)	l.m	7,672.00	3,288.00	10,960.00
5.20	Grouted Riprap Class A (Side Ditch)	cu.m	6,138.16	2,630.64	8,768.80
5.30	Single Metal Beam Guardrail	l.m	1,400.00	600.00	2,000.00
5.40	Double Metal Beam Guardrail	l.m	9,910.00	9,050.00	18,960.00
6.00	Miscellaneous Structures				
6.10	Warning Sign	each	18.00	27.00	45.00
6.20	Regulatory Sign	each	45.00	46.00	91.00
6.30	Reflectorial Thermoplastic Pavement Marking	sq.m	11,900.35	9,736.65	21,637.00

Table 1.5-2 Major Material List For CALAX

Material		Quantity				
		Package-1	Package-2	Service Road	Total	Remarks
1 Crushed Aggregate for Base and Sub base Course	cu.m	187,397.00	52,426.00	83,881.00	323,704.00	
2 Asphalt	ton	64,564.00	31,163.00		95,727.00	
3 Bituminous Tack Coat, Emulsified Asphalt, SS-1	ton	122.00	92.00		214.00	
4 Bituminous Prime Coat, MC-701	ton	717.00	228.00		945.00	
5 Fine Aggregate for Asphalt Pavement	cu.m	3,067.00	1,484.00		4,551.00	
6 Aggregate for Asphalt Pavement	cu.m	7,667.00	3,710.00		11,377.00	
7 Cement	ton	26,235.36	51,552.36	16,124.04	93,911.76	
8 Fine Aggregate for Concrete	cu.m	22,446.00	44,106.00	13,795.00	80,347.00	
9 Aggregate for Concrete	cu.m	38,479.00	75,610.00	23,649.00	137,738.00	
10 Reinforcing Steel, Grade 60 (Bridge)	kg	15,989,512.00	23,598,954.00	296,541.00	39,885,007.00	
11 Prestressing Steel	kg	375,657.00	1,293,936.00		1,669,593.00	
12 Structure Steel,	kg	238,256.00			238,256.00	
13 DOUBLE METAL BEAM GUARDRAIL (w/Post)	l.m	9,910.00	9,050.00		18,960.00	
14 Single Metal Beam Guardrail (w/Post)	l.m	1,400.00	600.00		2,000.00	
15 Rolled Gutter (Median) 600mm x 200mm	l.m	7,672.00	3,288.30		10,960.30	
16 Fiber Optic	1.m	9,910.00	8,307.00		18,217.00	
17 RCPC, 610 mm dia.	l.m	7,672.00	2,192.00	1,096.00	10,960.00	
18 RCPC, 1200 mm dia.	1.m	1,400.00	400.00	200.00	2,000.00	_

Source: JICA Study Team

Table 1.5-3 Major Equipment To Be Used

Equipment	Capacity	Package-1	Package-2	Service Road	Total Requirement Number	Remarks
Dump Track	11 ton	50	30	5	85	
Wheel Loder	1.53 m3	4	2	1	7	
Motor Grader 14G	3m/200HP	2	2	1	5	
Vibratory Roller	11 ton, 125 Hp	2	2		4	
Tired Roller	12.6 ton	2	2		4	
Crawler Tractor (w/Bulldozer)	Cataerpilar D7G PS	4	2	1	7	
Hydraulic Excavator	1.0 m3	10	3	2	15	
Backhoe	0.6 m3	6	4	1	11	
Vibratory Plate Compactor	7 Hp	10	6	1	17	
Track Crane	160 ton, 300Hp	3	6	1	10	
Crawler Crane	60T/275Hp	3	5	1	9	
Drill Rig for Pile	CWV Model TRM35/31 φ1.5~2.5	3	4	1	8	
Concrete transit Mixer	5 m3	12	20	5	37	
Concrete Pump	60 yd3	2	3	1	6	
Concrete Plant	40m3/hr	1	1		2	
Track Mounted Crane	21-25t, 200Hp	3	3	1	7	
Concrete Vibrator	Gasoline type	10	20	5	35	
Semi Trailer	20 ton	5	5	1	11	
Asphalt Paver	4.7 m, 112 Hp	2	2		4	
Asphalt Distributor	5 ton	2	2		4	
Asphalt Plant	60 t/hr	1	1		2	
Lane Marker	8 ton Track	1	1		2	
Steel girder and structure prefabrication equipment		1			1	
Industrial x-ray equipment at site		1			1	
Ultrasonic Examination Equipment at site		1	1		2	

Source: JICA Study Team

1.6 PROJECT SIZE

The proposed CALA Expressway (Laguna Section) Project has a linear length of **18.10** km and ROW of **50-60** m. **Table 1.6-1** shows the total area covered by the project alignment.

TABLE 1.6-1 TOTAL PROJECT SIZE

Length (km)	ROW	Total Area Covered (ha)
18.10	50	90.5
18.10	60	108.6

1.7 DEVELOPMENT PLAN, DESCRIPTION OF PROJECT PHASES AND CORRESPONDING TIMEFRAMES

Described in **Figure 1.7-1** is the implementation timeframe of the proposed CALA Expressway Project. Selection of consultant for the Detailed Engineering Design (DED) of the project is expected to start in 2013 until the third quarter of the year. The DED will immediately commence once the consultant is selected. Overlapping with the conduct of the DED is the execution of the Right-Of-Way (ROW) Acquisition which is anticipated to start in 2014. Selection of the Contractor will also start in 2014 around the second quarter. Once ROW acquisition and DED are completed, construction of the Expressway will start in the third quarter of 2015. Operation and maintenance of the newly constructed CALA Expressway begin after **two** (2) years of construction period.

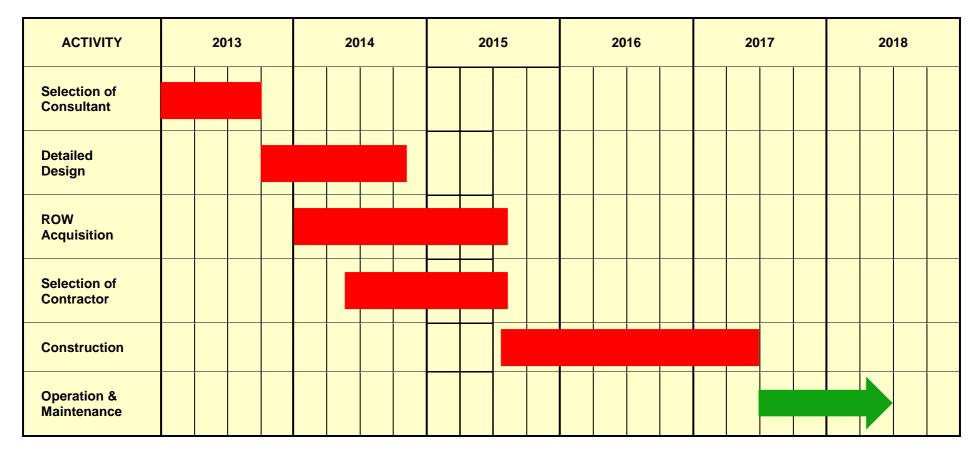


Figure 1.7-1 Implementation Schedule for the Proposed CALA Expressway Project (Tentative)

1.7.1 Pre-Construction Phase

The following activities are Pre-Construction activities In preparation for the construction of the viaduct substructure and superstructure the following activities shall be undertaken:

- Selection of DED Consultant;
- Conduct of Detailed Engineering Design;
- ROW Acquisition; and
- Selection of Contractor;

1.7.2 Construction Phase

The construction phase of the project shall entail the following activities:

- Relocation/replacement of affected basic social service utilities;
- Balling/cutting and relocation of trees;
- Construction/provision of temporary construction facilities/structures;
- Demolition of affected pedestrian overpass and foot bridges (if any);
- Earth moving activities and other related works;
- Erection of foundations;
- Superstructure construction (viaduct, and on and off ramps); and
- Construction of toll plaza;

1.7.2.1 Construction of Temporary Construction Facilities/Structures

The following facilities will be provided by the Contractor. These will be at the proximity of the construction site.

- Field office where staff meeting are held and overall construction activities are planned;
- Stockyard where other construction materials are kept;
- Equipment yard where idle equipment are parked;
- Construction barracks and workers' quarters where workers rest and spend their idle time;

- Dumping sites where excavated materials and other debris are temporarily dumped before final disposal;
- Space where construction materials such as cutting and bending of reinforcing bars, etc. are done;
- Communication base for proper coordination; and
- Service vehicles for engineers

1.7.2.2 Relocation of Affected Basic Social Service Utilities

Simultaneous to initial construction works, public utility lines identified during the Pre-Construction Stage will be relocated to suitable location. Normally, the concerned local utility (water supply, power and telephone) companies are contracted to do the work. Early and close coordination with the concerned utility companies will be undertaken to ensure that disruption of communication lines, and power and water supplies will be limited to the shortest possible time.

The Contractor will be tasked to do the drainage. Relocation and/or improvements shall be closely coordinated with concerned utility agencies and local government units.

1.7.3 Demobilization/Decommissioning Phase

Demobilization/Decommissioning Phase described herein entails the activities that will be undertaken immediately after completion of the CALA Expressway Project. The Contractor/Sub-Contractors must ensure that the following decommissioning/demobilization activities are complied with:

- All temporary construction facilities/structures such bunkhouses, field offices, and portable sanitary facilities are properly dismantled;
- All solid and domestic wastes generated from the temporary sanitation facilities are completely and properly disposed to designated disposal site/s duly approved by the concerned LGUs;
- All disconnected/disrupted basic social service facilities such as water and power supplies, and communication lines are fully restored to their normal functions;

- Affected public structures are reconstructed/restored; and
- All temporary stockpiles construction spoils/debris are properly disposed to the approved disposal sites

1.7.4 Operational Phase

The proposed CALA Expressway shall be opened to traffic after **2 years** of construction period. Operation and maintenance is expected to commence on the second half of Year **2017**. During this period, the Operator shall perform various maintenance works along the expressway to ensure optimal service to motorists using the highway which include the following activities:

- Periodic inspection and maintenance of the expressway's structural integrity;
- Periodic inspection and maintenance of drainage facilities installed;
- Periodic inspection of pavement and pavement markings;
- Periodic inspection and maintenance of traffic signs and related facilities;
- Periodic inspection and maintenance of tubular steel railings; and
- Periodic inspection and maintenance of the toll plaza and all ancillary facilities

1.8 MANPOWER REQUIREMENT

Listed on **Table 1.8-1** is the manpower requirement for the proposed CALA Expressway (Laguna Section) Project. Also presented in the **Table** is the estimated number of personnel by gender needed for each item

ESTIMATED MANPOWER REQUIREMENTS FOR THE PROPOSED CALA Table 1.8-1 **EXPRESSWAY (LAGUNA SECTION) PROJECT**

Manpower Requirement			Preferred Scheme for Sourcing							
		Men	Women							
Construction Supervision Consultants' Staff										
60	Technical Staff	36	24	From outside; from the host LGUs (qualified and duly endorsed by the Mayors); from the DIA (qualified and duly endorsed by the Brgy. Captain)						
10	Administrative Staff	2	8	From outside; from the host LGUs (qualified and duly endorsed by the Mayors); from the DIA (qualified and duly endorsed by the Brgy. Captain)						
Contractors' Eng	gineering and Supervisi	ion Staff								
70	Technical Staff	42	28	From outside; from the host LGUs (qualified and duly endorsed by the City Mayor); from the DIA (qualified and duly endorsed by the Brgy. Captain)						
20	Administrative Staff	4	16	From outside; from the host LGUs (qualified and duly endorsed by the Mayors); from the DIA (qualified and duly endorsed by the Brgy. Captain)						
Construction Pe	rsonnel									
160	Heavy equipment operators	160	N.A.	From outside; from the host LGUs (qualified and duly endorsed by the Mayors); from the DIA (qualified and duly endorsed by the Brgy. Captain)						
30	Construction foremen	30	N.A.	From outside; from the host LGUs (qualified and duly endorsed by the Mayors); from the DIA (qualified and duly endorsed by the Brgy. Captain)						
50	Carpenters	50	N.A.	From outside; from the host LGUs (qualified and duly endorsed by the Mayors); from the DIA (qualified and duly endorsed by the Brgy. Captain)						
1,000–1,500	Unskilled workers (bar benders, steel men, masons, etc.)	1,000– 1,500	N.A.	From outside; from the host LGUs (qualified and duly endorsed by the Mayors); from the DIA (qualified and duly endorsed by the Brgy. Captain)						

1.9 INDICATIVE PROJECT INVESTMENT COST

Summarized in Table 1.9-1 is the estimated project cost for the proposed CALA Expressway Project.

Estimated Project Cost for the CALA Table 1.9-1 **Expressway**

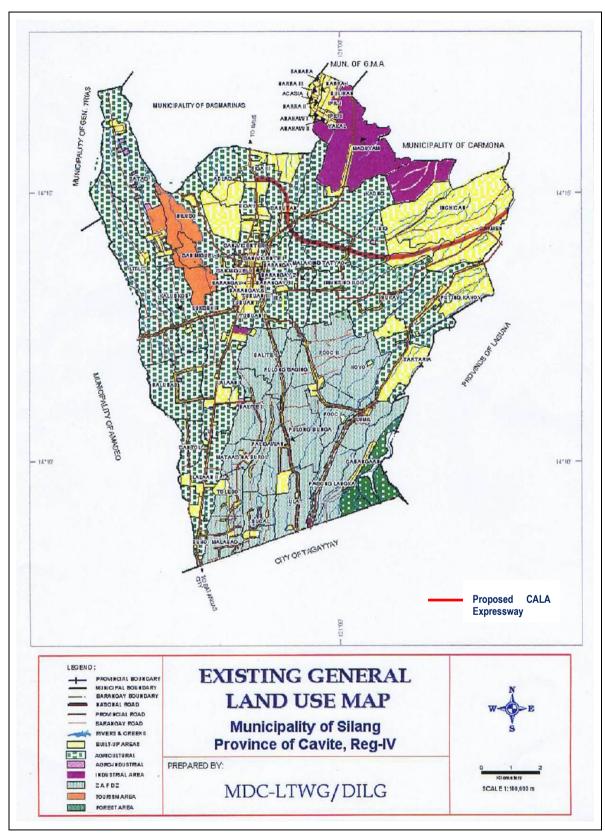
ltem	Cost (Million Pesos)
ROW	3,200
Civil Works	13,400
TOTAL	16,600

Chapter 2 Analysis of Key Environmental Impacts

2 ANALYSIS OF KEY ENVIRONMENTAL ASPECTS

2.1 THE LAND

2.1.1 Land Use and Classification


2.1.1.1 Silang, Cavite

The Land Use Classification Map of Silang, Cavite presented in **Figure 2.1.1-1**, shows that there are **11** land use classifications identified in the Municipality of Silang, Cavite. Most recent data (Year 2009) from the Provincial Agriculturist Office (PAO) indicated that about **60.3%** or **9,431.83** ha of Silang's total land area of **15,641** ha are primarily intended for agricultural purposes. Being the major crops of the town, pineapple and coffee are predominantly planted to approximately **7,014.66** ha or **74.37%** of the municipality's agricultural lands.

The remaining **6,209.17** ha (25.63%) in Silang's land area is almost evenly distributed to other purposes such as residential, industrial, built-up, institutional, agro-industrial, commercial, tourism area, cemetery, open grassland with scattered trees, and dump site.

In Silang, the proposed CALA Expressway alignment will generally traverse agricultural areas. However, actual survey conducted revealed that most of these areas are unproductive agricultural lands which appear to have transformed into open grassland land (see Plate No. 1) due to unavailability of irrigation system. Patches of marginal pineapple plantations and corn fields are observed in Brgy. Sabutan and Tibig (see Plate Nos. 3 and 4). Farther down southeast, the alignment will traverse through some coffee, banana, and coconut plantations in Brgy. Tibig.

The alignment will also cut across some residential properties of **Stateland** in Brgy. Sabutan, and **Extra Ordinary** in Brgy. Carmen. On the southeast, it will also pass along prime residential areas such as the **Ayala West Grove Heights** and **South Forbes** in Brgy. Inchican.

Source: Municipality of Silang, Planning Division

Figure 2.1.1-1 Land Use Classification Map of Silang, Cavite

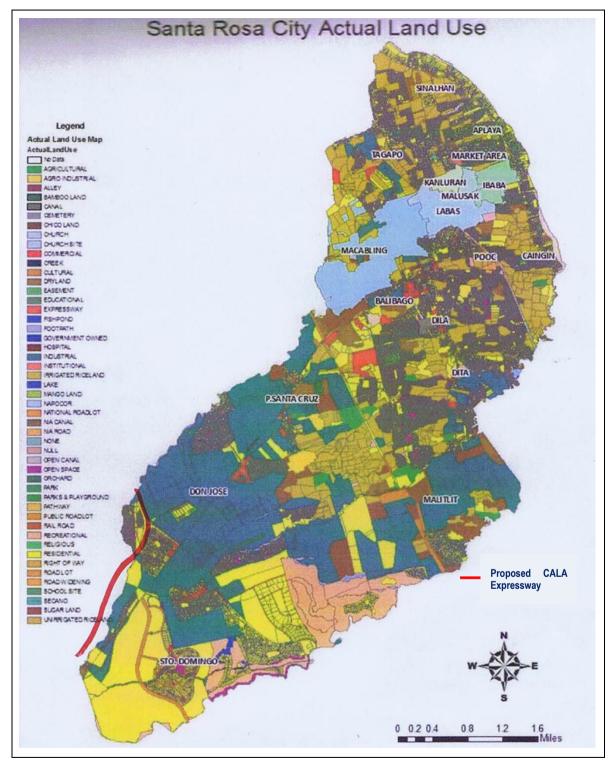
Plate No. 1 Vast unproductive and non-irrigated agricultural land to be traversed by the CALA Expressway alignment (red line) between Km 3+900–4+300 in Brgy. Tibig, which has evidently transformed into open grassland.

Plate No. 2 Patches of corn fields (encircled) in the middle of grassland areas observed in Brgy. Sabutan, Silang, Cavite between **Km 1+000–2+000**.

Plate No. 3 Marginal pineapple plantation on the southeast side of Sabutan Road, in Brgy. Sabutan, Silang, Cavite (Km 1+000–2+000).

Plate No. 4 Photo of the orchard planted to coffee, banana, and coconut owned by the Mercados between Km 4+200-4+800in Brgy. Tibig, Silang, Cavite. The proposed CALA Expressway alignment will pass through the middle of the plantation, effectively splitting the property into two (2).

2.1.1.2 Santa Rosa, Laguna


Santa Rosa City's total land area of approximately **54.13 km²** (**5,413 ha**) is divided into **11** land use classifications that includes residential, agricultural, industrial, built-up, agro-industrial, commercial, tourism area, institutional, cemetery, mud/sand, and open grasslands. Among these classifications, large portions of the City's land area are almost equally subdivided to residential, industrial, and agricultural purposes.

The extensive industrial estates of the Santa Rosa City as shown in the Land Use Classification and Vegetation Map presented in **Figure 2.1.1-2**are virtually concentrated on the western sector of the City. It accommodates the Laguna Techno Park, the largest bottling plant of Coca Cola Company in the Philippines, the assembly plant of Isuzu Philippines Corporation, Toyota Motors Corporation Philippines manufacturing plant, Nissan Motors Philippines, and other recognized industries such as Common Image Generator Interface (CIGI) and Filsyn. Food giant Monde Nissin Corporation's **14-hectare** manufacturing plant (Lucky Me noodles and Monde biscuits) is also located in the City's industrial zone. The western sector of Santa Rosa is likewise characterized by the presence of prime residential subdivisions, Paseo Mall, hotel establishments, as well as the eco zone areas of Nuvali.

Open grasslands with scattered trees likewise occupy a significant fraction of the City's land area. In the future, these areas are expected to be developed into first-class residential zones and prime commercial centers, particularly those along the Sta. Rosa-Tagaytay Road.

The tourism area on the southernmost part of Sta. Rosa City hosts the Sta. Elena Golf & Country Estate that includes one of the premier golf courses in the country, the Sta. Elena Golf and Country Club. The City is also home to Enchanted Kingdom, a world-class theme park located at RSBS Blvd., in San Lorenzo South, Balibago that opened on July 28, 1995.

From Brgy. Carmen, Silang Cavite, the alignment will enter Sta. Rosa City through Brgy. Don Jose. The alignment will connect to the existing Nuvali Spine Road and will pass by the residential developments of **Sta. Rosa Village** on the northeast and the Sta. Rosa Estates on the southeast. To the east of the proposed alignment is the Laguna Techno Park, Sta. Rosa City side.

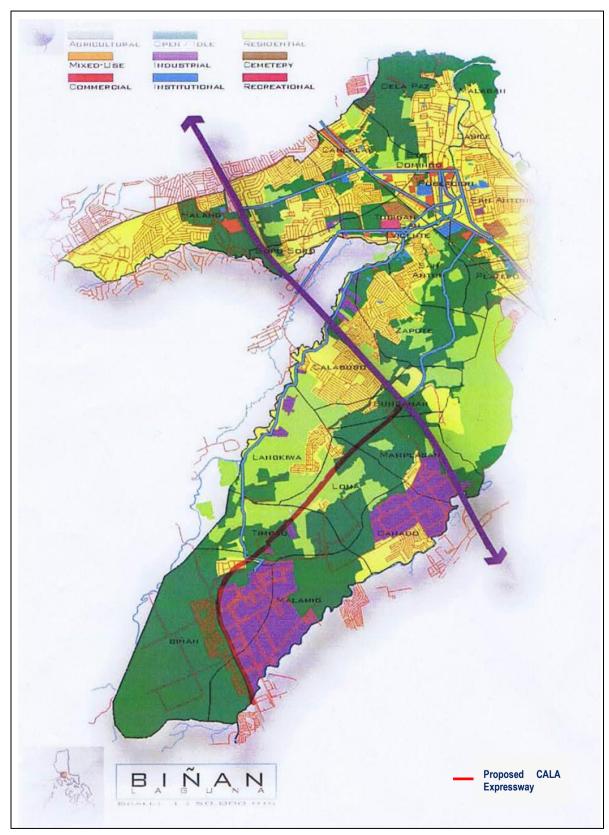

Source: Sta. Rosa City, Planning Division

Figure 2.1.1-2 Land Use Classification and Vegetation Map of Sta. Rosa City, Laguna

2.1.1.3 Biñan City, Laguna

Biñan City has a total land area of **4,350 ha,** which represents **2.5%** of the entire Laguna area. Of the 11 land use classifications illustrated in **Figure 2.1.1-3**, a large portion of the City's land area is dedicated for residential purposes. Open grasslands with scattered trees also represent a substantial space in the City. The built-up, agricultural, and industrial uses nearly secure equal shares of Biñan's land areas. The remaining portions of the City are subdivided to other utilizations such as agro-industrial, commercial, institutional, cemetery, mud/sand, and tourism area.

The alignment from the Nuvali Spine Road in Brgy. Don Jose, Santa Rosa City, will then follow the existing Laguna Boulevard in Brgy. Biñan, Biñan City, passing by the Laguna Techno Park on the east, and **Sta. Rosa Village** and **San Jose Village** on the west. As the alignment continues to follow the existing road towards northeast, it will pass by **Southvillle** in Brgy. Malamig before cutting across the **Tamayo Property** in Brgy. Timbao. It will then follow the existing Nuvali passing by the **Verdana Homes** on the northwest and **Celina Homes** on the east. Towards its terminus, the alignment immediately after Celina Homes will pass along the **Greenfields Property** at **Km 16+150**. The proposed CALA Expressway will eventually cut across the **Greenfields Property** approximately at **Km 16+950** and will continue to traverse the said property until it reaches its end section at **Km 18+010** in Brgy. Mamplasan.

Source: Biñan City, Planning Division

Figure 2.1.1-3 Land Use Classification and Vegetation Map of Biñan City, Laguna

Plate No. 5 Photo taken along the Greenfield Parkway-Mamplasan Overpass Road inside the Greenfields property between Km 17+000-18+000. Both sides of the road are open grassland areas with patches of trees.

Plate No. 6 Photo taken along the Nuvali Road. properties on both sides of the road are owned by the Greenfields.

Plate No. 7 Photo taken along the existing Nuvali Road, Brgy. Malamig, Biñan City, Laguna section. On the southeast side of the road is the Laguna Techno Park.

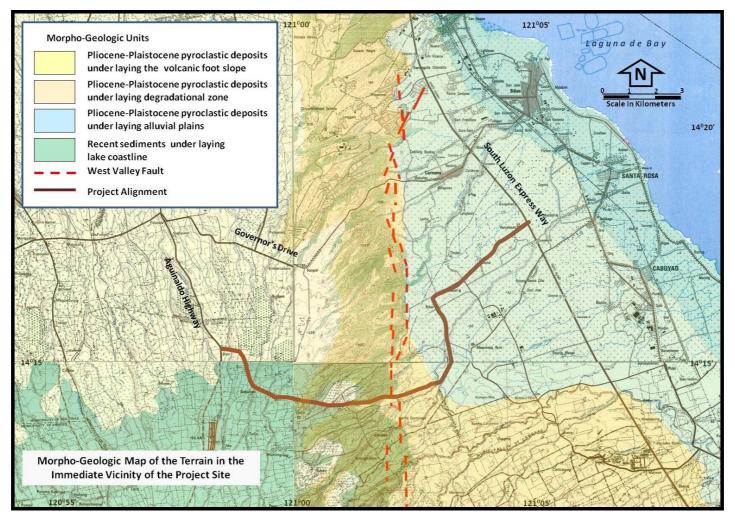


Plate No. 8 Photo taken at the northwest side of the roundabout in Brgy. Mamplasan, Biñan City.

2.1.2 General Geomorphology and Geology

The general morphology of the project area can be described as generally flat on the eastern portions (Cities of Sta. Rosa and Biñan), gradually shifts to rolling terrain as it approaches the western side, until it attains an average slope of 18% as it reaches Silang, Cavite on the west side of the alignment. As briefly explained in **Table 2.1.2-1**, there are four (4) distinct geomorphic units, namely from the east: (i) Lake Coastline, (ii) Alluvial Plain, (iii) Degradation Zone, and (iv) Volcanic Foot Slope. The corresponding morphogeologic units are described and graphically shown in Figure 2.1.2-1.

Table 2.1.2-1 Summary of Morpho-Geologic Units Along the proposed Cavite-Laguna Expressway (Laguna Section) Project Alignment							
GeomorphicUnits	Geologic Age/Lithology	Terrain Feature	Slope				
Volcanic Foot Slope	Plio-Plaistocene volcanic ash/tuff deposited as pyroclastic flow at the flank of Taal Volcano prior to caldera formation	Generally circular in shape and gently sloping from the crest at the area of Tagaytay towards the low land along the coastline of Manila Bay and Laguna de Bay	3-8% near the toe (Silang to the low lands; 8-18% in Tagaytay to Silang, Cavite				
Degradation Zone		Marks the transition between the volcanic foot slope and the alluvial plains. Characterize by deeply incised near parallel gullies with near vertical walls and escarpment of the West Valley Fault	30-50% at gully walls and escarpment; 3–8% on slope sections in between parallel gullies				
Alluvial Plain	Plio-Plaistocene volcanic ash/tuff deposit inter-tonguing with the alluvial sediments form by erosion of gullies	Generally flat terrain that extends from the volcanic foot slope and gently slopes eastward towards Laguna de Bay.	3-8%				
Lake Coastline	Recent unconsolidated sediments	Generally flat terrain that runs parallel to the coastline of Laguna de Bay.	0-3%				

(Modified from PHIVOLCS Map)

Figure 2.1.2-1 Summary of the Morpho-Geologic Units along the Project Route Corridor

The West Valley Fault System

Based on the Impact Area Map (**Figure 2.1.2-2**) showing the plot of the West Valley Fault (WVF), the proposed Cavite-Laguna Expressway alignment intersects the WVF in the vicinity of Ayala West Grove/South Forbes, approximately between **Km 8+000–8+500** in Brgy. Carmen, Silang, Cavite. This road section cuts on a very gentle slope along the west flank of the Tagaytay Volcanic Slope.

Deeply incised gullies with near vertical walls runs easterly on the northern margin of the Ayala West Grove and South Forbes and at the southern margin of the Extra Ordinary.

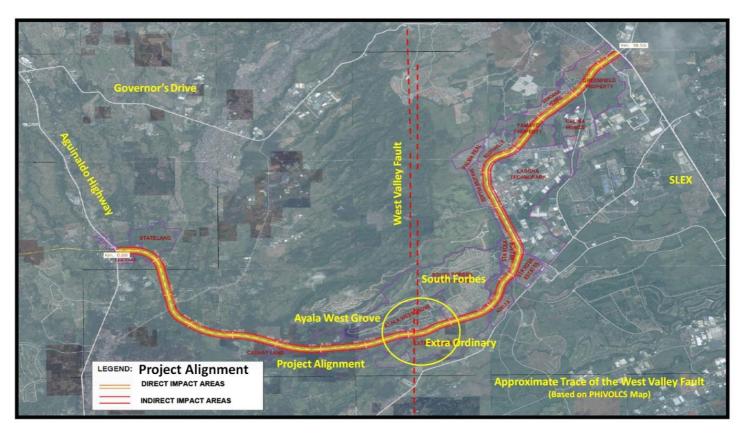


Figure 2.1.2-2 Approximate Trace of the West Valle Fault along the Proposed CALAX Alignment

This is an approximate trace on the West Valley Fault relative to the Project Alignment based on available map from PHIVOLCS. Said maps were based on aerial photo interpretation with limited ground checking such as trenching. Since the trace on the fault is not a single line but actually a zone with varying width on the ground, the actual point of intersection of the fault trace and the road alignment can only be determine if actual ground trenching is conducted preceded by aerial photo interpretation and ground resistivity survey.

At the point of intersection, the road runs along the 4-lane well paved, Tagaytay-Sta. Rosa Road, constructed in the late 1990's with a very gentle gradient and design speed of approximately 80 kph. No slope cut exists in the road section thus, no rock fall, land slide and other adverse effect due to slope instability can be expected.

In the event of fault movement, fault rupture is possible resulting to displacement. For Marikina Fault, displacement varies, depending on the site. In the area of Tunasan, Muntinlupa City, displacement of about 1 meter lateral and 0.5 meters vertical as shown in the attached photos.

Plate No. 9 Vertical displacement reflected on road pavement in Tunasan, Muntinlupa City.

Plate No. 10 Dislocated wall section due to lateral movement of fault in Tunasan, Muntinlupa City.

Based on the study by MMDA-JICA-PHIVOLCS the West Valley Fault can possibly generate a magnitude 7.2 earthquake. By deterministic approach using the Fukushima Tanaka Equation, the estimated Peak Ground Acceleration (PGA) ratio to be experienced by the structures of the project road such as but not limited to the bridges and interchanges, at a given distance are summarized in the following Tables.

Table 2.1.2-2 Estimates of Peak Ground Acceleration (g) in Average Ground Condition at the Site Due to Earthquakes from West Valley Fault				
Distance Between	Distance Between Earthquake Magnitudes			s
Epicenter and Project Site (Km)	6.8 7.2 7.4 7			
0.0	0.64	0.65	0.65	0.66
5.0	0.51	0.55	0.56	0.58
10	0.40	0.46	0.48	0.51
15	0.33	0.39	0.41	0.45
20	0.27	0.33	0.369	0.40

Table 2.1.2-3 Estimates of Peak Ground Acceleration (g) in Average Rock Condition at the Site Due to Earthquakes from West Valley Fault				
Distance Between	Ea	arthquake N	lagnitude	es
Epicenter and Project Site (Km)	6.8 7.2 7.4			7.7
0.0	0.38g	0.39g	0.39g	0.39g
5.0	0.31g	0.33g	0.34g	0.35g
10	0.24g	0.27g	0.29g	0.31g
15	0.20g	0.23g	0.25g	0.27g
20	0.16g	0.20g	0.21g	0.24g

The PGA estimate used the possible earthquake magnitude of **6.8**, **7.2**, and **7.4** for a given fault length of **30 km**, **67 km**, and **96 km**, respectively, as estimated by *Bautista* et al (2000). In addition, the possible maximum earthquake magnitude of M7.7 based on horizontal and vertical displacement measurements along the fault line done by *R.E. Rimando* and *P.L.K. Knuepfer* (Feb. 2004) were also used. The estimated magnitudes and fault length of *Bautista* and *Rimando* is summarized as follows:

Assumed Fault Length	Possible Magnitude
Length = 30 km	6.8
Length = 67 km	7.2
Length = 96 km	7.4
(Based on Rimando et al (2004)	7.7

The computation shows that the ground acceleration level decreases as the distance of the project site from the possible hypocenter increases.

2.1.2.1 Geological Hazard Assessment

Earthquakes

Earthquakes in the region around the project site are influenced by the tectonic features described in **Figure 2.1.2-3**. Most of the earthquakes plotted in the map belong to **four(4)** clusters, one along the eastern shores of Luzon, around Polilio

Island, one on the eastern coast of Samar; another cluster exists on the western coast of Luzon around Mount Pinatubo and the south of Taal Volcano, along the northern shore of Mindoro. Seismicity in these four clusters is influenced mostly by the subduction processes in these sites, as modified by the local volcanic and tectonic structures. The other earthquakes plotted in the map that are not related to the four clusters are generated by the major faults that cut the Philippine archipelago.

Seismicity along the East Luzon Trench is characterized by a sequence of high magnitude earthquakes (larger than **5.5**) and their time sequence and spatial distribution link them to the apparent stress partitioning from the Philippine Trench to the faults in northern Luzon. The earthquakes in this area are interpreted to be caused mainly by the convergence between the Benham Plateau and Luzon.

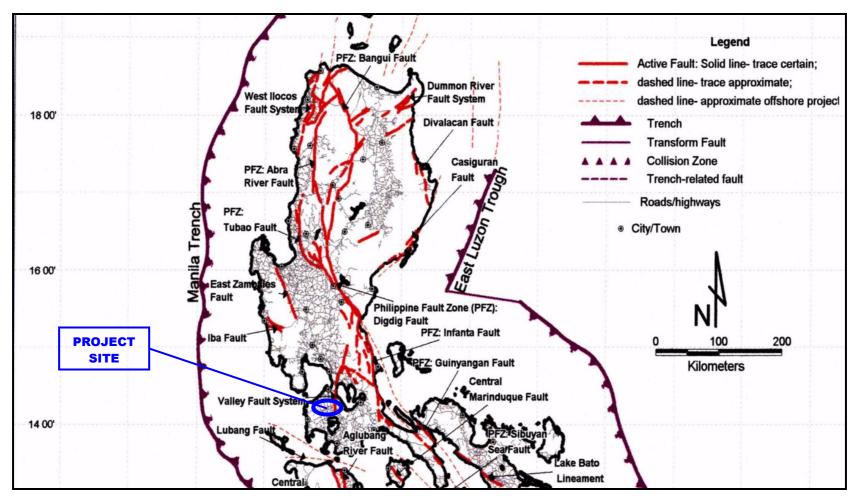
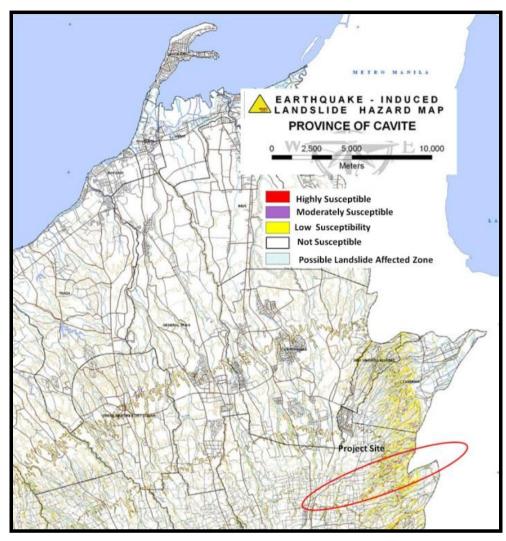
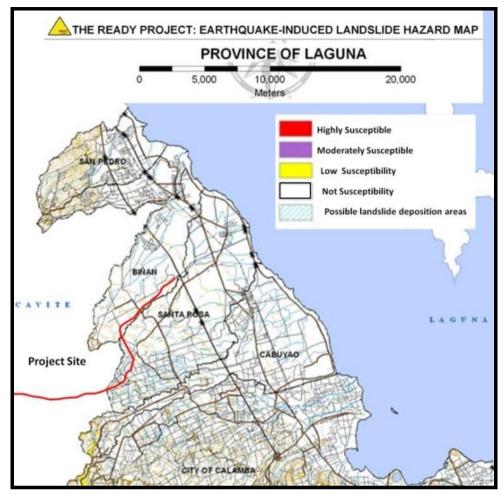


Figure 2.1.2-3 Distributions of Active Fault and Trenches in Luzon


(Modified from EPRMP for the Proposed LRT Line 2 East & West Extension Project 2011, ECOSYSCORP, Inc.)

Liquefaction Vulnerability

Liquefaction is not considered as hazard along the project alignment since the under laying bedrock are compacted and well consolidated volcanic ejectas. Loose, water saturated sediments susceptible to liquefaction are confined along the coastline of Laguna de Bay and Manila Bay, a far distance from the alignment.


Earthquake-Induced Landslides

As can be discerned from the earthquake-induced landslides hazard maps of Cavite and Laguna Provinces provided as **Figures 2.1.2-4** and **2.1.2-5**, respectively, the proposed CALA Expressway alignment is not susceptible to such hazard. Landsides due to earthquake if ever it will occur will be confined on gully walls and possibly at the escarpment at the eastern margin of the volcanic slope. The alignment will not pass along escarpments. Gullies if crossed will be through bridges with engineered abutments founded into the gully floor or imbedded into the gully walls.

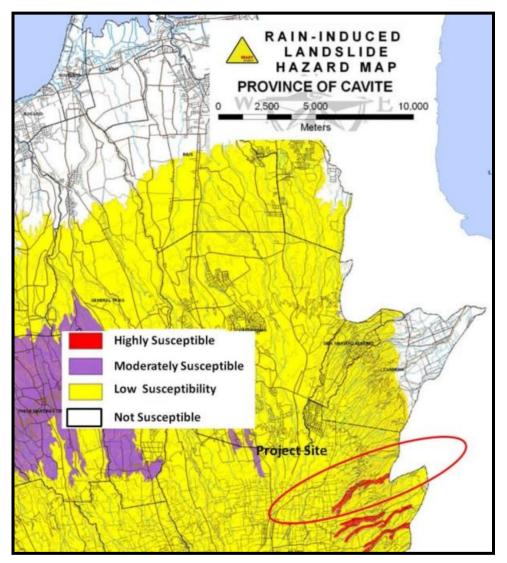
(Map modified from the Ready Project of the MGB, PHIVOLCS, NAMRIA, and others 2009)

Figure 2.1.2-4 Earthquake-Induced Landslide Hazard Map of Cavite Province

(Map modified from the Ready Project of the MGB, PHIVOLCS, NAMRIA, and others 2009)

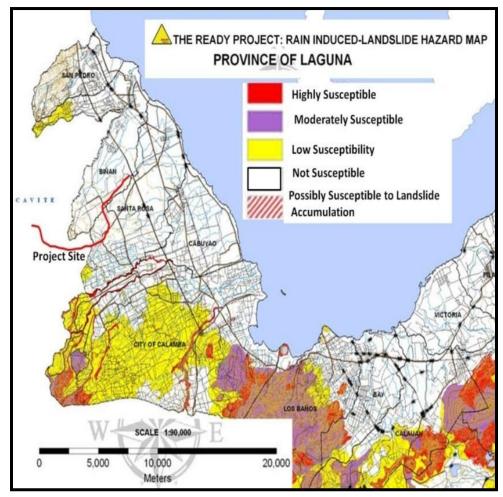
Figure 2.1.2-5 Earthquake-Induced Landslide Hazard Map of Laguna Province

Rain-Induced Landslides


Map prepared under the *Ready Project* shows the road section in Cavite will be on an area with low susceptibility to rain induced landslide while the section in Laguna runs on a terrain not susceptible to rain induced landslide.

The project will have a low risk to rain induced land slide due to the following:

- The alignment will run through a gently sloping terrain;
- Suitable angle of repose will maintained along cut sections;
- Rain-induced landslide if ever it will occur will be confined on unstable section of walls of gullies; and


Bridge crossing will have properly designed abutments founded into the gully floor or imbedded into the gully walls

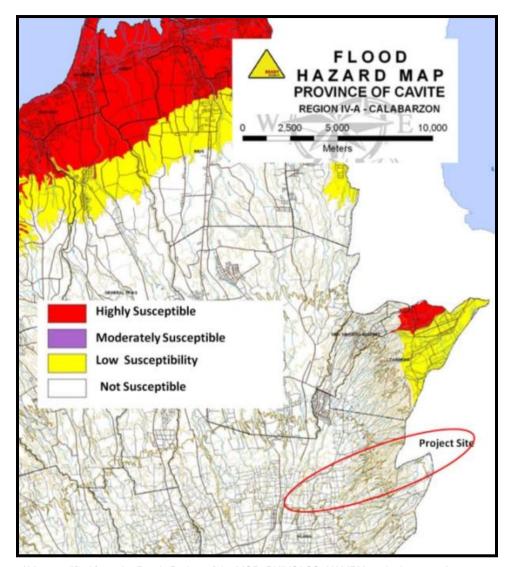
Figures 2.1.2-6 and 2.1.2-7 present the rain-induced hazard maps for the Provinces of Cavite and Laguna, respectively.

(Map modified from the Ready Project of the MGB, PHIVOLCS, NAMRIA and others 2009)

Figure 2.1.2-6 Rain-Induced Landslide Hazard Map of Cavite Province

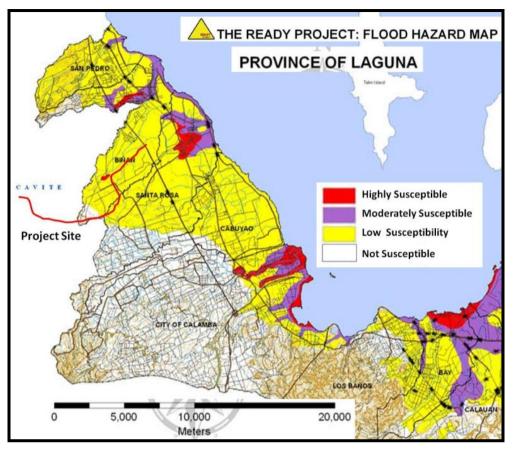
(Map modified from the Ready Project of the MGB, PHIVOLCS, NAMRIA and others 2009)

Figure 2.1.2-7 Rain-Induced Landslide Hazard Map of Laguna Province


Flooding

The road alignment has a low susceptibility to flooding due to the following terrain considerations:

- 1. Elevation is relatively high about **140 meters** at the Aguinaldo Highway to about **20 meters** above sea level in SLEX. This elevation allows storm water to immediately flow towards Laguna de Bay in Laguna and Manila Bay in Cavite;
- 2. The alignment crosses a number of deep gullies which acts as a discharge points for engineered drainage lines. These gullies are relatively deep and flow towards the receiving bodies of water (e.g. Laguna de Bay etc.);


- 3. Both sides of the proposed road alignment are developed subdivisions with engineered drainage systems;
- 4. The developed sections of the alignment already have engineered drainage lines. Flooding at the site can be avoided through:
 - Biñan, Carmona, Sta. Rosa, and the adjacent cities and municipalities need to have an integrated drainage system
 - Dumping of garbage on natural water ways must be avoided
 - Natural water ways must be kept free of informal settlers
 - Engineered drainage lines both on private and public properties/development have to be regularly cleaned and properly maintained
 - Flood alleviation is a community effort and solutions cannot be through recommendations best by application
- 5. Topographic map and cross section of the road project to indicate the areas of localized flooding cannot be used since these maps are confined within the road alignment. Further, the adjacent areas of the proposed road alignment had already been developed into subdivisions and industrial parks which are private properties with their own drainage system; and
- 6. Flash flood cannot be mitigated since the flood water will be coming from the surrounding catchment area where the project has no control or influence. What can be mitigated is the duration of inundation due to flash flood by providing sufficient and adequate drainage system both (e.g. cross drain and storm drain) to hasten for flood water to subside.

The flood hazard maps for the Provinces of Cavite and Laguna are given as **Figures 2.1.2-8** and **2.1.2-8**, respectively.

(Map modified from the Ready Project of the MGB, PHIVOLCS, NAMRIA and others 2009)

Figure 2.1.2-8 Flood Hazard Map of Cavite Province

(Map modified from the Ready Project of the MGB, PHIVOLCS, NAMRIA and others 2009)

Figure 2.1.2-9 Flood Hazard Map of Laguna Province

Volcanic Activity (Taal Volcano)


Given the approximate distance of the project site from Taal Volcano as indicated in **Figure 2.1.2-10**, ash fall is the most likely volcano related hazard that might affect the project site. The level on impact however may be low and dictated by the following:

- Type of eruption;
- The volume of extruded volcanic materials (a function of the type of eruption);
- Height of eruption/ash cloud; and
- Direction of the prevailing wind during the eruption period (more likely if the prevailing wind is the southwest monsoon

Volcanic ash is pulverized rock to silt and sand size particles by the volcanic activity. This are ejected material which initially form an eruption column that rise several miles above a volcano. Height of eruption column depends on the type of eruption. The column eventually spread to form a cloud high into the atmosphere. It eventually spread with the plume direction influenced by the prevailing wind direction.

Hazards related to volcanic activity and the possible effects to the project site are summarized in **Table 2.1.2-4**.

Table 2.1.2-4	Table 2.1.2-4 Hazards Related to Volcanic Activity and Possible Effect to the Project Site			
HAZARD	DEGREE	IMPACT	MITIGATION	
Ash Fall	Influenced by the nature of eruption and prevailing meteorological condition	 Ash can clog drainage; Fine ash is extremely slippery, hampering driving and walking; Volcanic ash is gritty, abrasive and corrosive and can trouble infants, the elderly and those with respiratory ailments. Ash particles can abrade the front of the eye under windy conditions. For these reasons, minimal exposure of ash sensitive individuals is advised; Ash can abrade and damage machinery and sensitive electronic/electrical equipment; and Long-term exposure to wet ash can corrode metal 	 Volcanic ash accumulation along the project roadway should be cleared immediately; Vulnerable people must wear face mask or cover their nose & mouth with damp handkerchief or cloth; Public buildings and critical infrastructures are most vulnerable. Identify and organize ash clearing teams to monitor and clear ash accumulation; Closely monitor the bulletin of PHIVOLCS and heed their advice; and Issue warning bulletin to road users 	
Volcanic Smog		 Generally associated with eruption clouds/ash fall; Can aggravate respiratory problems; and Can form acid rain that can corrode metals and contaminate drinking water if collected or sourced from rainwater catchment systems 	Closely monitor the bulletin of PHIVOLCS and heed their advice; and Issue warning bulletin to road users	
Ground Subsidence due to Eruption	Low	Confined within the Volcano Island	No effect to the project area	
Pyroclastic Flow				
Volcanic Bombs/ Projectiles				
Lava Flow				
Fissure				
Volcanic Slides				
Seiche		Confined within the Coastline of Taal Lake		

Source: Google Earth

Figure 2.1.2-10 Approximate Distance of Taal Volcano from the Proposed Cavite-Laguna (Laguna Section) Expressway Alignment

2.1.3 Pedology

Summarized in **Table 2.1.3-1** are the soil characteristics in the study area.

Table 2.1.3-1 Soil Characteristics in the Study Area				
Feature	Coastal Landscapes	Alluvial Lowlands	Piedmont Plains and Foothills	Hills and Mountains
Effective Soil Depth	Shallow to moderately deep	Shallow moderately deep	Shallow to Deep	Hills and Mountains
Composition	Organic	Organic	Non-organic	Non-organic
Soil plasticity	Very high	Very high	Low	Low
Soil drainage	moderate	moderate	good	good
Note: Color-shaded	Note: Color-shaded columns are the type of soils found in the study area			

Source: Bureau of Soils and Water Management, Department of Agriculture, 2012

2.1.3.1 Alluvial Lowlands

In Cavite, parent soil material is largely fine clay that is poorly drained in flat to nearly flat areas and moderately drained in gently sloping areas. Fine loam is found in the levee areas. As such, soil varies from sandy to silty clay loam to clay and is somewhat poorly drained. The area possesses potentials for high yielding wells.

2.1.3.2 Hills and Mountains

Parent soil material is sandy loam or loam that is drained well. Effective soil depth varies from very shallow to deep.

2.1.3.3 Borehole Data

Figure 2.1.3-1 presents the location of bore hole tested along the recommended CALA Expressway alignment. As can be discerned from the soil profile illustrated in **Figure 2.1.3-2a**, **Figure 2.1.3-2b**,and **Figure 2.1.3-2c**, **Layer A** corresponds to soil materials that are characteristic of coastal landscapes and **alluvial plains**, being slightly to highly plastic, due to considerable amount of clay materials.

Layer B, which is described as grayish brown/gray silty sand with little amount of tuff materials, and **Layer C**, which are non-plastic sandy silts are characteristic of soils found in **hilly and mountainous landscapes**, as presented in the previous section.

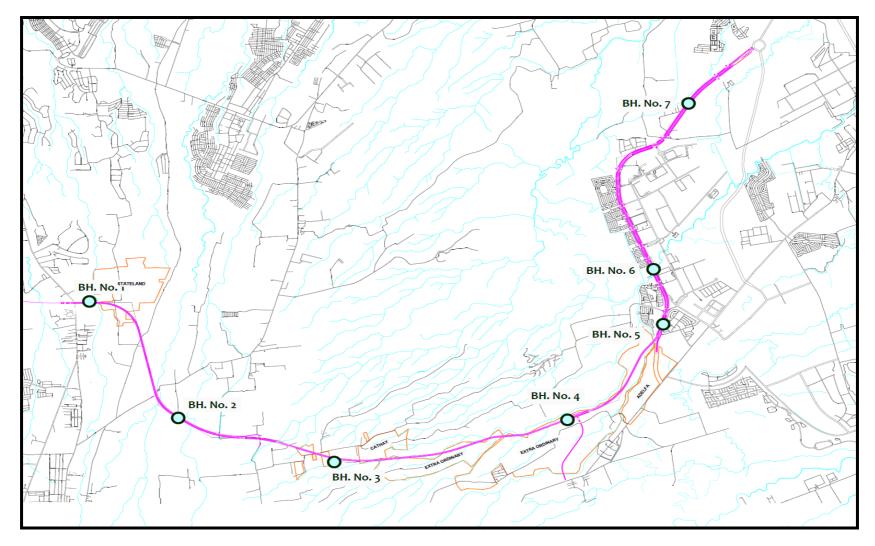


Figure 2.1.3-1 Location of Boreholes along the CALA Expressway Alignment

2.1.4 Terrestrial Biology

2.1.4.1 Terrestrial Flora

The vegetation cover along the areas traversed by the proposed CALA Expressway alignment can be classified into **two** (2) major types, the **Cultivated Vegetation**, and the **Natural Vegetation**. The **Natural Type** primarily consists of Secondary Growth and Lowland Grassland, while the **Cultivated Type** on the other hand is subdivided into Agricultural and Built-Up. To fully visualized the vegetation cover of the area refer to **Fig. 1.1.3-1**, Site Condition (page 1-8)

Cultivated Vegetation Type

Agricultural Type

Photo 1

Photo 2

Photo 1 and 2 taken at Km. 1+000-2+000 at Barangay Sabutan, Cavite, vast unproductive and non-irrigated agricultural land to be traversed by the CALA Expressway.

Based on the Land-use Map of Silang, Km. 1+000-Km. 2+000, located in Bgy. Sabutan, Silang is an Agricultural Area.

Among the affected areas, Silang, Cavite represents the biggest agricultural expanse. The town is famous for producing the very sweet medium-sized **pineapple** (*Ananas comosus*) and the best tasting **robusta coffee** (*Coffea canephora*) in the whole Province of Cavite. Yellow and green corn (*Zea mays*) varieties are extensively cultivated in Silang, while palay (*Oryza sativa*) is planted merely in upland areas due to unavailability of irrigated farmlands. Yellow corn

variety is the main raw material for animal feeds. Limited number of Cocos nucifera is also sighted in the area.

Root crops such as kamote/sweet potato (*Ipomea batatas*), kamoteng kahoy (*Manihot esculenta*), patatas (*Solanum tuberosum*), and peanut (*Atachis hypogaea*) are also cultivated in Silang. According to local accounts, *A. hypogaea* is planted in between cropping seasons to recover soil fertility. Vegetables grown include okra (*Abelmoschus esculentus*), lettuce (*Lactuca sativa*), eggplant (*Solamun melongena*), tomato (*Lycopersicon esculentum*), and black pepper (*Piper nigrum*).

Natural Vegetation Type

Photos 3-6 are taken at Km. 2+900 Barangay Sabutan, Silang, Cavite at the gullies bordering Malaking Ilog River. Mixed stands of secondary forest tree species such as F. nota, T. orientalis, A cadamba, M. Philipinensis, M. tanarius, A. bunius, Bambusa sp., mahogany, Gliricida sepium, etc.

In the study area, there is no primary forest growth observed. The sparsely vegetated landscape serves as a reminder of the past human activities that have dictated the formation of a distinct flora community. Regenerations of tree species typical of a *secondary forest* are very evident along gullies and edges of rivers and creeks. Mixed growths of mature and juvenile *Ficus nota* (tibig), *Macaranga tanarius* (binunga), *Anthocephalus cadamba* (kaatoang bangkal), *Trema orientalis* (anabiong), *Antidesma bunius* (bignai) is common. It is balanced well by the growths of associated species like *Mallotus multiglandosus* (alim), *Vitex negundo* (lagundi), *Ficus odorata* (pakiling), *Macaranga grandifolia* (takip-asin), and *Artocarpus communis* (rimas/kamansi). Proliferations of *Leucaena leucocephala* (ipil-ipil) strongly indicate previous slash and burn farming activities in the study area.

It is important to note that endangered and/or rare flora species were not encountered in the study area. Given in Table 2.1.4-1 is the list of tree species identified in the study area.

Table 2.1.4-1 List of Secondary Forest Plant Species Found in the Study Area (1/2)			
Common Name	Scientific Name	Family Name	
Achuete	Bixa Orellana	Bixaceae	
Alibangbang	Bauhinia monandra	Leguminosae	
Alim	Mallotus multiglandosus	Euphorbiaceae	
Anabiong	Trema orientalis	Ulmaceae	
Anahaw	Livistona rotundifolia	Palmae/Arecaceae	
Antipolo	Artocarpus blancoi	Moraceae	
Balanti	Homallanthus sp	Euphoibiaceae	
Banaba	Lagerstroema speciosa	Lythraceae	
Banato	Mallotus philipensis	Euphorbiaceae	
Bangkal	Nauclea sp.	Rubiaceae	
Bignai	Antidesma bunius	Euphorbiaceae	
Binayuyu	Antidesma ghaesembilla	Euphorbiaceae	
Binunga	Macaranga tenarius	Euphorbiaceae	
Bunga	Areca Catechu	Palmae	
Buri	Corypha elata	Palmae	
Dao	Dracontomelon dao	Anacardiaceae	
Hemindang	Macanranga tanarius	Euphorbiaceae	
Hauili	Ficus septica	Moraceae	
Hinlaumo	Mallotus ricinoides	Euphorbiaceae	

Table 2.1.4-1 List of Secondary Forest Plant Species Found in the Study Area (1/2)			
Igot	Ficus septica	Moraceae	
Ilang Ilang	Cananga odorata	Annonaceae	
Ipil-Ipil	Leucaena leucocephala	Rubiaceae	
Kaatoang-bangkal	Anthocephalus cadamba	Rubiaceae	
Kalios	Streblus asper	Moraceae	
Kamagong/mabolo	Diospyros philipensis	Ebenaceae	
Kapok	Ceiba pentandra	Bombacaceae	
Kauayan	Bambusa sp.	Gramineae	
Lagundi	Vitex negundo	Verbenaceae	
Libas	Spondias pinnata	Anacardiaceae	
Lumbang	Aleurites moluccana	Euphorbiaceae	
Madre cacao	Gliricida sepium	Leguminosae	
Malapapaya	Polyscias nodosa	Araliaceae	
Molave	Vitex parviflora	Verbenaceae	
Makiling	Ficus odorata	Moraceae	
Rimas	Artocarphus communis	Moraceae	
Takipan	Caryota rumphiana	Palmaceae	
Talisay	Terminalia catappa	Combretaceae	
Tanglin	Adenanthera intermedia	Leguminosae	
Tibig	Ficus nota	Moraceae	
Tubing-bakod	Jatropha curcas	Euphorbiaceae	
Source: As Observed by the EIA Study Team during Field Survey			

Photo 7: Taken at Km. 3+900- 4+300 in Barangay Tibig, Silang, Cavite

Natural Vegetation Type

Secondary Growth

Lowland Grassland

"Kaingin" or slash and burn farming is the oldest method of agricultural practice known to man since the early years of the 20th century. Undeniably, it has greatly influenced the formation of vegetative cover not only in the study area, but in the entire country as well. Due to the enormity of the converted forest areas, farmers are unable to till every corner of the expanse, which leads to the evolution of another vegetation community, called the *Lowland Grassland*.

Similar to other grassland, vegetation growth in the study area is dictated mainly by **two** (2) grass species – *Saccharum spontaneum* (talahib) and *Imperata cylindrica* (cogon). Although *I. cylindrica* is the more aggressive species of the two, grassland areas traversed by the alignment are dominated by the much taller and coarser *S. spontaneum*. Mixed growths of various grass, shrub, and herb species such as *Axonopus compressus* (carabao grass), *Lantana camara* (coronitas), *Amaranthus spinosus* (colitis), *Chromolaena odorata* (hagonoy), *Clitorea ternatea* (pukinggan), *Peperomia pellucida* (pansit-pansitan/olasiman ihalas), *Eclipta alba* (tinta-tintahan), *Paspalum conjugatum* (laau-laau/T-grass) are also common.

Densely covering the grassland/uncultivated land are *Murdannia nudiflora* (alikbangon-lalaki), *Mimosa pudica* (makahiya), *Urena lobata* (kulut-kulutan), *Aneilema malabaricus* (bangal), *Alocasia macrorhiza* (biga/elephant's ear), *Chloris barbata* (koroskorosan), and *Hyptis capital* (botonesan).

Enumerated in **Table 2.1.4-2** are the various grass, weeds, shrubs, and herbs species encountered in the study area.

Table 2.1.4-2 List of Shrub, Herb, Grass, and Sedge Species Identified in the Study Area (2/2)			
Common Name	Scientific Name	Family Name	Habit
Alikbangon-lalaki	Murdannia nudiflora	Commelinaceae	Herb
Alinang	Cyperus iria	Cyperaceae	Sedge
Apuy-apuyan	Cleome gynandra	Capparidaceae	Herb
Baki-Baki	Cyperus difflormis	Cyperaceae	Sedge
Bakwit	Eriochloa procera	Gramineae	Grass
Bangal	Aneilema malabaricum	Commelinaceae	Herb
Botonesan	Hyptis capitana	Labiatae	Herb
Botonsilyo or Borobotones	Cyperus kyllingia	Cyperaceae	Sedge
Botonsilyong Gapang	Gomphrena celosioides	Amaranthaceae	Herb
Bulang	Echinochloa colonum	Gramineae	Grass
Buntot pusa	Pennisetum polystachyon	Gramineae	Grass
Coronitas	Lantana camara	Verbenaceae	Shrub
Dampalit	Sesuvium portulacastrum	Aizoaceae	Herb
Dawa-Dawa	Dawa-Dawa	Gramineae	Grass
Golasiman	Portulaca oleracea	Portulacaceae	Herb
Hagonoy	Chromolaena odorata	Asteraceae	Shrub
Hangod	Achyranthes aspera	Amaranthaceae	Herb
Kalog-Kalog	Crotalaria retusa	Leguminasae	Shrub
Kastuli	Abelmoschus moschatus	Malvaceae	Herb
Kogon	Imperata cylindrica	Gramineae	Grass
Korokorosan	Chloris barbata	Gramineae	Grass
Kulut-kulutan	Triumfetta bartramia	Tiliaceae	Herb
Laau-Laau	Paspalum conjugatum	Gramineae	Grass
Lapnis	Malachra capitata	Malvaceae	Shrub
Makahiya	Mimosa pudica	Leguminosae	Herb
Makahiyang lalake	Aeschynomene amerikana	Leguminosae	Herb
Malbas	Abutilon indicum	Malvaceae	Shrub
Maraotong	Acalypha indica	Euphorbiaceae	Herb
Mutha	Cyperus rotunda	Cyperaceae	Sedge
Olasiman-Ihalas	Peperomia pellucida	Piperaceae	Herb
Nguad	Bidens pilosa	Compositae	Herb
Olasiman-Ihalas	Peperomia pellucida	Piperaceae	Herb
Polytrias	Polytrias praemorsa	Gramineae	Grass

Table 2.1.4-2 List of Shrub, Herb, Grass, and Sedge Species Identified in the Study Area (2/2)			
Pukinggan	Clitorea ternatea	FAbaceae	Vine
Putokan	Crotalaria quinquefolia	Leguminosae	Herb
Sabilaw	Cyanotis axillaris	Commelinaceae	Herb
Sambong	Blumea balsamifera	Compositae	Shrub
Sampa-sampalukan	Phyllanthus niruri	Euphorbiaceae	Herb
Seru walai	Cleome rutidusperma	Capparidaceae	Herb
Talahib	Saccharum spontaneum	Gramineae	Grass
Tayum	Indigofera suffruticosa	Leguminosae	Herb
Tayuman	Indigofera hirsuta	Leguminosae	Herb
Tikog	Fimbrystilis globulosa	Cyperaceae	Sedge
Tintatintahan	Eclipta alba	Compositae	Herb
Titonia or Tithonia	Tithonia diversifolia	Compositae	Shrub
Uray	Amaranthus spinosus	Amaranthaceae	Herb
Walis-walisan	Sida acuta	Malvaceae	Shrub
Source: As Observed by the EIA Study Team during Field Survey			

Photo 8: Km. 4+200-4+800, Bgy. Tibig, Silang, Cavite, various fruit bearing trees

Commercial fruit trees such as papaya (Carica papaya), mango (Mangifera indica), banana (Musa sapientum/Musa paradisiaca), lanzones (Lansium domesticum), jackfruit (Arthocarpus heterophylla), rambutan (Nephelium lappaceum), and coconut (Cocos nucifera) are widely grown in the study area. C.

papaya is widely grown in backyards and broader farmlands as it is considered as a profitable enterprise used in cosmetics and food preparation.

Anthurium (*Anthurium andraeanum*) and orchids (*Dendrobium sp.*) are the main cutflowers propagated. Cutflowers and ornamentals are generally grown throughout the Silang aside from agricultural produce.

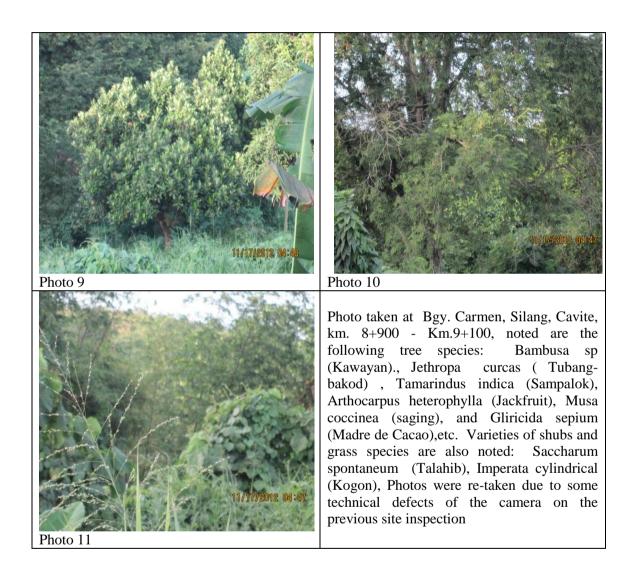


Photo taken at Bgy. Carmen, Silang, Cavite also has a mixed grown of commercial fruit trees such as mango (Mangifera indica), banana (Musa sapientum/Musa paradisiaca), lanzones (Lansium domesticum), jackfruit (Arthocarpus heterophylla), rambutan (Nephelium lappaceum), tamrindus indica (Sampalok) and coconut (Cocos nucifera) are widely grown in the study area. The area has also wild varieties of shrubs, herb, and grass which includes the Bambusa Specie (Kauayan), Saccharum spontaneum (Talahib), Imperata cylindrical (Kogon)C. papaya is widely grown in backyards and broader farmlands as it is considered as a profitable enterprise used in cosmetics and food preparation.

ECOSYSCORP, Inc.

Table 2.1.4-3 List of Fruit Bearing Trees Identified in the Study Area			
Common Name	Scientific Name	Family Name	
Anonang	Cordia dichotoma	Ehretiaceae	
Aratiles	Muntingia calabura	Tiliaceae	
Atis	Annona squamosa	Annonaceae	
Avocado	Persea americana	Lauraceae	
Balimbing	Averrhoa caranbola	Oxalidaceae	
Bayabas	Psidium Guajaba	Myrtaceae	
Cacao	Theobroma cacao	Sterculiaceae	
Calamansi	Citrus microcarpa	Rutaceae	
Camachile	Pithecellobium dulce	Leguminosae	
Chestnut	Castanea sp.	Fagaceae	
Chico	Manilkara sapota	Sapotaceae	
Coconut/niyog	Cocos nucifera	Palmae	
Dalandan	Citrus aurantium	Rutaceae	
Duhat	Sizigium Cumini	Myrtaceae	
Durian	Durio zibethinus	Malvaceae	
Granda	Punica granatum	Punicaceae	
Guyabano	Annona muricata	Annonaceae	
Jackfruit	Arthocarpus heterophylla	Moraceae	
Kaimito	Chrysophyllum cainito	Sapotaceae	
Kamias	Averrhoa bilimbi	Oxalidaceae	
Kasoi	Anacardium occidantale	Anacardiaceae	
Lansones	Lansium domesticum	Meliaceae	
Makopa	Sizigium Samarangense	Myrtaceae	
Mandarin	Citrus reticulata	Rutaceae	
Manga	Mangiferia indica	Anacardiaceae	
Papaya	Carica papaya	Caricaceae	
Pomelo	Citrus aurantium	Rutaceae	
Rambutan	Nephelium lappaceum	Rutaceae	
Saging	Musa coccinea	Musaceae	
Sampalok	Tamarindus indica	Leguminosae	
Santol	Sandoricum koetjape	Meliaceae	
Sineguelas	Spondias purpurea	Anacardiaceae	
Tiesa	Pouteria campechiana	Sapotaceae	
Source: As Obse	rved by the EIA Study Team du	ring Field Survey	

Photo No. 12 Grasslands predominated by *S. spontaneum* (talahib) observed on both sides of Nuvali Road, at km. 10-Km. 11+500 Brgy. Timbao, Biñan City.

Built-Up Type

Essentially, built-up vegetation as the term suggests is comprised mainly of ornamental plant species propagated in urban and settlement areas. Ornamental plants largely correspond to "garden plants" which are usually cultivated in gardens, front yards and backyards, and landscaping areas. Most commonly, ornamental garden plants are grown for the display of aesthetic features enjoyed by visitors and the public.

Characteristic of the built up vegetation in the study area is described by a wide variety of ornamental plants species. The landscaped frontages and periphery of the exclusive residential subdivisions along the proposed alignment augments the myriad of plants species present.

Vitex parviflora (molave) is fast becoming a popular ornamental tree. It is abundantly cultivated at the landscaped area of Verdana Homes alongside *Plumeria rubra* (white calachuchi) and *Jatropha pandurifolia* (Shanghai beauty). Accentuating the frontage area are *Sanseviera cylindrica* (spear plant), *Sanseviera trifasciata* (bow string hemp),

ECOSYSCORP, Inc.

Cracaena reflex (Song of India), and Dracaena reflex (Song Thailand). Well-trimmed Cynodon dactylon (bermuda grass) covers the ground like a carpet.

Mature stands of *Samanea saman* (acacia) lining the Nuvali Road in Brgy. Malamig, provide shade and relief from the scorching heat of the sun to the walking public in front of the Laguna Techno Park. Mixed stands of *Swietenia macrophylla* (large-leaved mahogany), *Swietenia mahogani* (common mahogany), and *Pterocarpus indicus subsp. indicus* (narra) were also observed.

Photo of the existing Nuvali Road and Laguna Blvd., Brgy. Malamig,, Biñan, Laguna. On the southeast side of the road is the Laguna Techno Park, Biñan side. Built-up areas are planted with varieties of tree species and Ornamental Trees

Common Name	Scientific Name	Family Name	Habit
Adelfa	Nerium oleander	Apocynaceae	Shrub
Agave	Agave franzosinii	Agavaceae	Herb
Alocasia	Alocasia sp.	Araceae	Herb
Asparagus plant	Asparagus densiflorus	Liliaceae	Herb
Bandera Española	Cannax generalis	Cannaceae	Herb
Baston de San Jose	Cordyline fruticosa	Agavaceae	Shrub
Begonia	Begonia coccinea	Begoniaceae	Herb
Bignonia	Tecoma stans	Bignoniaceae	Shrub
Blood leaf	Iresine herbstii	Amaranthaceae	Herb
Blood lily	Haemanthus multiflorus	Amaryllidaceae	Herb
Bougainvillea	Boungainvillea spectabilis	Nyctaginaceae	Vine
Buntot tigre	Sanseviera trifasciata	Agavaceae	Herb
Calico plant	Althernanthera ficoidea	Amaranthaceae	Herb
Common dischidia	Dischidia oiantha	Asclepiadaceae	Shrub
Common spear plant	Sanseviera cylindrica	Agavaceae	Shrub
Corazon de Maria	Caladium bicolor	Araceae	Herb
Cucharita	Althernanthera ficoidea	Amaranthaceae	Herb
Dama de noche	Cestrum nocturnun	Solanaceae	Shrub
Dama de noche	Cestrum nocturnun	Solanaceae	Shrub
Dieffenbachia	Dieffenbachia maculata	Araceae	Herb
Doña Aurora	Mussaenda Doña Aurora	Rubiaceae	Shrub
Episcia	Episcia cupreata	Gesneriaceae	Shrub
False birds of paradise	Heliconia bihai	Heliconiaceae	Herb
False sisal	Agave decipiens	Agavaceae	Herb
Five fingers	Schefflera odorata	Araliaceae	Vine
Fortune plant	Dracaena fragrans	Agavaceae	Shrub
Gumamela	Hibiscus rosa-sinensis	Malvaceae	Shrub
Lobster claw	Vriessea carinata	Bromeliaceae	Herb
Lollipop plant	Pachystachys lutea	Acanthaceae	Shrub
Mauritius hemp	Furcrarea foetida	Agavaceae	Shrub
Mayana	Coleus Blumei	Labiatae/Lamiaceae	Herb
Monstera	Monstera deliciosa	Araceae	Vine
Moradong dilaw	Pseuderanthemum reticulatom	Acanthaceae	Shrub
Orchids	Dendrobium sp.	Orchidaceae	Herb

Table 2.1.4-4 List of Ornamental Plants Species Identified in the Study Area (1/2)			
Painted drop-tongue	Aglaonema crispum	Araceae	Herb
Palawan	Cyrtosperma merkusli	Araceae	Herb
Panama hat plant	Carludovica palmata	Cyclanthaceae	Shrub
Pigeon berry/golden bush	Duranta repens	Verbenaceae	Shrub
Purple false eranthemum	Pseuderanthemum atropurpureun	Acanthaceae	Shrub
Rose	Rosa	Rosaceae	Herb
Sampaguita	Jasmimum bifarium	Oleaceae	Vine
San Francisco sp.	Codiaeum variegatum	Euphorbiaceae	Herb
Sanchezia	Sanchezia speciosa	Acanthaceae	Shrub
Santan	Ixora chinensis	Rubiaceae	Shrub
Sedang dahon	Aglaonema commutatum	Araceae	Shrub
Shrimp plant	Justicia brandegeana	Acanthaceae	Shrub
Song of India	Cracaena reflex	Agavaceae	Herb
Song of Jamaica	Dracaena reflexa	Agavaceae	Herb
Song of Thailand	Dracaena reflexa	Agavaceae	Herb
Spanish bayonet	Yucca aloifolia	Agavaceae	Shrub
Spider lily	Crinum amabile	Amaryllidaceae	Herb
Toothed philodendron	Philodendron lacerum	Araceae	Vine
Umbrella plant	Cyperus alternifolius	Cyperaceae	Shrub
Yellow-margined century plant	Agave americana	Agavaceae	Herb

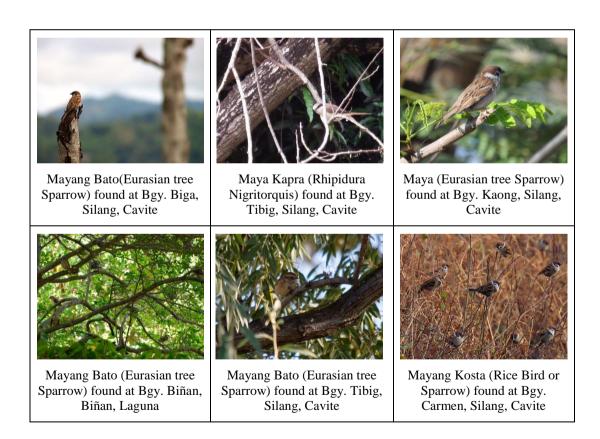
Table 2.1.4-5 List Study A	of Ornamental Trees Area (1/2)	Observed in the
Common Name	Scientific Name	Family Name
Acacia	Samanea saman	Leguminosae
Adelfa	Nerium oleander	Apocynaceae
African tulip	Spathodea campanulata	Bignoniacea
Agoho	Casuarina equisetifolia	Casuarinaceae
Banyan tree	Ficus retusa	Moraceae
Baobab	Adansonia digitata	Bombacaceae
Beach pandan	Pandanus tectorius	Pandanaceae
Begonia	Begonia coccinea	Begoniaceae
Benjamin's fig	Ficus benjamin	Moraceae
Bignonia	Tecoma stans	Bignoniaceae

	of Ornamental Trees Area (1/2)	Observed in the	
Bo tree	Ficus religiosa	Moraceae	
Bunga de China sp.	Veitchia merrillii	Palmae/Arecaceae	
Caballero	Caesalpinia pulcherrima	Leguminosae	
Campanilla	Allamandra cathartica	Apocynaceae	
Caña fistula	Cassia fistula	Leguminosae	
Common mahogany	Swietenia mahogani	Meliaceae	
Dapdap	Erythrina variegata	Leguminosae	
Dracaena	Dracaena multiflora	Agavaceae	
Eucalyptus/blue gum tree	Eucalyptus Blobulus	Myrtaceae	
Fire tree	Delonix regia	Leguminosae	
Giant dracaena	Cordyline australis	Agavaceae	
Indian tree	Polyalthia longifolia	Annonaceae	
Japanese acacia	Acacia auriculiformis	Leguminosae	
Juniper	Junniperus communis	Cuppressaceae	
Kalatsutsing-puti	Plumeria obtusa	Apocynaceae	
Karmay	Phyllanthus acidus	Euphorbiaceae	
Large-leaved mahogany	Swietenia macrophylla	Meliaceae	
Licuala	Licuala spinosa	Palmae	
Lipstick palm	Cyrtostachys renda	Palmae/Arecaceae	
Mac Arthurs' palm	Ptychosperma macarthur	Palmae/Arecaceae	
Maluko	Pisonia alba	Nyctaginaceae	
Mangium	Acacia mangium	Leguminosae	
Narra	Pterocarpus indicus subsp. indicus	Leguminosae	
Neem tree	Azidarachta indica	Meliaceae	
Octopus tree	Brassaia actinophylla	Araliaceae	
Oliva	Cycas revoluta	Cycacaceae	
Panama rubber tree	Castilla elastica	Moraceae	
Pitogo	Cycas circinalis	Cycadaceae	
Rainbow tree	Dracaena margarita	Agavaceae	
Shanghai beauty	Jatropha pandurifolia	Euphorbiaceae	
Thailand shower/Siamese acacia	Cassia siamea	Leguminoseae	
Traveler's tree	Ravenala madagascariensis	Sterculiaceae	
Yellow bell	Allamanda cathartica	Apocynaceae	
Source: As Observed by the EIA Study Team during Field Survey			

Photo taken along the Greenfield Parkway- Mamplasan Overpass Road inside the Greenfields property between **Km 17+000–18+000**. Both sides of the road are open grassland areas with patches of tree species: Ficus nota (Tibig), Vitex parviflora (molave), etc..

2.1.4.2 Terrestrial Wildlife Fauna (Animals)

The existing terrestrial fauna in the area is classified into **two** (2) major groups, **Avifauna** (birds) and **domesticated animals**. Further discussion on the fauna groups is presented in the succeeding section.


Avifauna (Birds)

The study area is typical of a disturbed wildlife habitat. Forest areas that will provide habitat to fauna species no longer exist. As discussed previously, species

diversity of the remaining vegetation covers which are commonly converged on ravines and edges of rivers and creeks or in scattered patches is poor.

This being the case, comprehensive study on the existing terrestrial fauna was not undertaken. Instead, documentation of the wildlife fauna was based primarily on actual sightings, focusing mainly on avifauna (birds), since this is the only group most likely to be affected by the project. Species encountered were identified and validated using descriptive and photographic handbook guide on Philippine birds.

Majority of the birds encountered are species commonly found in urban, agricultural, and grassland areas, the most common of which is the Eurasian tree sparrow (*Passer montanus*). This species is believed to have been introduced to the country from China during the 1930s. Species associated with *P. montanus* that were identified in the area include yellow-vented bulbul (*Pycnonotus goiavier*), long-tailed shrike (*Lanius schach*), glossy swiftlet (*Collocalia esculenta*), and pied fantail (*Rhipidura javanica*).

Mayang Bato (Eurasian tree Sparrow) found at Bgy. Malamig, Biñan, Laguna

Uwak (crow on top of a carabao) found at Bgy. Sabutan, Silang, Cavite

Tagak (white heron) found at Bgy. Sabutan, Silang, Cavite

Source: PMO-BOT and ESSO, DPWH

Other birds species observed are zebra dove (*Geopelia striata*), barred-button quail (*Turnix suscitator*), barred rail (*Gallirallus torquatus*), lesser coucal (*Centropus bengalensis*), brown shrike (*Lanius cristatus*), chestnut munia (*Lonchura malacca*), white-breasted wood swallow (*Artamus leucorynchus*), cattle egret (*Bubulcus ibis*), and striated grassbird (*Megalurus palustris*).

Sighting of olive-backed sunbird (*Cinnyris jugularis*), crested myna (*Acridotheres cristatellus*), white-collared kingfisher (*Halcyon chloris*), black-naped oriole (*Oriolus chinensis*), large-billed crow (*Corvus macrorhychos*) were likewise documented.

Interview with the locals revealed that **two** (2) species of owls are present in the study area. These are the Philippine endemic scops owl (*Otus megalotis*) and grass owl (*Tyto longimembris*).

It was not established if significant bird activities such as mating, roosting, and nesting are performed in the study area. Evidently, the existing flora species do not offer sufficient food value to the birds keeping the diversity range at the minimum. Thus, bird species from nearby protected forest areas like the Mt. Makiling Forest Reserve is not expected to migrate in the study area.

During the field survey, there are no threatened, endangered, and/or vulnerable species encountered.

Common Name	Scientific name	Conservation Status
Barrel Rail	Gallirallu storquatus	Conservation Status
Barrel-button quail	Turnix suscitator	Least Concerned
Black-naped oriole	Oriolus chinensis	Least Concerned
Brown Shrike	Laniu scristatus	Least Concerned
Cattle Egret	Bubulcus ibis	Least Concerned
Chesnut Munia	Lonchura Malacca	Least Concerned
Crested Myna	Acrido therescritatellus	Least Concerned
Eurasian tree sparrow	Passer Montanus	Least Concerned
Glossy Swiftlet	Collocalia esculenta	Least Concerned
Grass Owl	Tyto longtimembris	Least Concerned
Large-billed crow	Corvus macrorhychos	Least Concerned
Lesser coucal	Centropus bengalensis	Least Concerned
Long-tailed shrike	Lanius schach	Least Concerned
Olive-backed sunbird	Cinnyris jugularis	Least Concerned
Pied Fantail	Rhipidura javanica	Least Concerned
Scops owl	Out smeggalotis	Least Concerned
Straited grass bird	Megaluruspalust	Least Concerned
White-breast wood	Artamus leucorynchus	Least Concerned
swallow		
White-collared kingfisher	Halcyn chloris	Least Concerned
Yellow-vented bulbul	Pycnonotus goiavier	Least Concerned
Zebra dove	Geopelia striata	Least Concerned

Domesticated Animals

Perhaps, dog (Canis lupus familiaris) is the first animal to be domesticated and has been the most widely kept working, hunting, and companion animal in human history. It is also considered to be the most popular pet in the world. Like the dog, domestic cats or house cats (Felis silvestris catus) are highly valued by humans for companionship. Its ability to hunt vermin such as rats, mice, and cockroaches make these small furry felines a more beneficial household pet.

Cattles or more popularly known as cows (Bos primigenus) are merely left to graze in open wastelands and are not bred for its commercial livestock value and

dairy products but to assist farmers in agricultural works. Carabao (*Bubalus bubalis carabanesis*) which is one of the popular members of the farm animals is a great help to farmers in pulling both a plow and the cart used to haul produce.

Chicken (*Gallus gallus domesticus*) is one of the common and widespread domestic animals raised in the area aside from pig/hog (*Sus domesticus*). Small scale poultry farming is seen in Brgy. Sabutan and Tibig in Silang, Cavite. Chickens are raised not only as a source of meat but also of eggs. Backyard gamecocks or fighting cocks breeding is also observed.

Roosters and hens (*Gallus gallus*) are often seen wandering around scrabbling for food even after the owners have just fed them. As a member of farm animals, native hens (female) in the area are bred for sustenance, whose meat has been known to be tastier than the commercial breed.

Domestic goat (*Capra aegagrus hircus*) is a subspecies of goat domesticated from the wild goat of southwest Asia and Eastern Europe. It is a member of the family Bovidae and is closely related to the sheep as both are in the goat-antelope subfamily Caprinae. In the project area, goats are usually kept for sustenance or up to some extent for commercial purposes.

Pigeon fanciers in the area keep domestic pigeons simply for recreation. Though pigeon flying is not a popular sport, breeding of pigeons (*Columba livia f. domestica*) merely provide the breeders with some form of enjoyment. Trained domestic pigeons which are common in the study area are able to return to their home loft if released at a location that they have never visited before and that may be up to 1,000 km away.

2.2 THE WATER

2.2.1 River Systems

There are **three** (3) main river systems draining the area traversed by the alignment. These are the: (i) *Malaking Ilog River*, (ii) *Lumbia River*, and (iii) *Malindig River*. Malaking Ilog is an almost N-S trending, steeply incised river with upstream portions draining the Tagaytay highlands, into the downstream catchment areas in GMA, Cavite. Lumbia and Malindig are being fed by numerous tributaries, and drain the hilly areas of Silang from the southwest, into the lowland areas of Sta. Rosa and Biñan, on the northeast.

2.2.2 Water Quality

Baseline water quality sampling was undertaken at **three** (3) selected rivers crossed by the proposed CALA Expressway alignment to establish the physico- chemical properties of the waterways that may be affected by the project. Water sampling Sta. 1, Malaking Ilog River is located in Brgy. Sabutan, Silang, Cavite. Sampling Sta. 2, Lumbia River is located in Santo Domingo, Santa Rosa City, Laguna, and the third sampling station, Sta. 3 Malindig River is sited in under the bridge along Laguna Blvd. separating the Cities of Santa Rosa and Biñan. **Figure 2.2.2-1** shows the location of the water sampling sites.

Laboratory results showed that the detected Total Coliform content from **all water** samples exceeded the DENR Standard of 5,000 MPN/100 ml. Among the samples, the one obtained from the Malindig River exhibits the highest coliform content of 160,000 MPN/100 ml. This followed by the sample from Lumbia River with 24, 000 MPN/100 ml. The least amount was measured from the sample collected from Malaking Ilog River (17, 000 MPN/100 ml). Some of the known sources of coliform bacteria include agricultural run-off, effluent from septic systems sewage discharge, and infiltration of domestic animal fecal matter.

All water samples contain the same amount of lead. The value detected is **less than 0.01 mg/L**, and is well within standard limit of **not more than 0.05 mg/L**. Dissolved oxygen (DO) levels measured ranged from **6.2-7.7 mg/L**. These values are within the required DENR Standard of not less than **5.0 mg/L**. The observed total suspended solids (TSS)

levels of the samples is between 4.5-10.2 mg/L, while the 5-day day BOD range is 1.1-2.2 mg/L. Conductivity at 25°C varies between 314 μ /cm to 370 μ /cm.

Physically, the rivers are clear and water is freely flowing. The pH level range is between **6.9-8.0**, which is within the desirable limit to provide protection for the life of freshwater fish and bottom dwelling invertebrates. Water temperature of Lumbia River (28°C) is relatively warmer compared to the Malaking Ilog and Lumbia Rivers (23°C and 24°C, respectively). The disparity is probably due to the difference in the time of sampling.

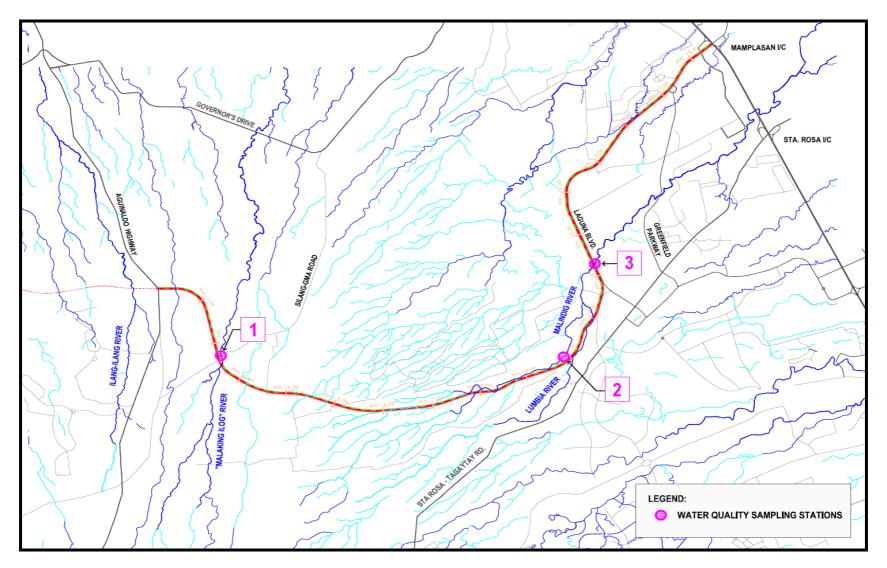


Figure 2.2.2-1 Water Quality Sampling Sites along the Proposed CALA Expressway Alignment

Sampling Station & Location	Date & Time of Sampling	Geographic Coordinates	Parameters								
			рН	Temp (°C)	Turbidity	TSS (mg/L)	Lead (mg/L)	Total Coliform	Dissolved Oxygen	5-Day 20°C BOD	Conductivity @ 25°C
Sta.1 Malaking Ilog River, (Brgy. Kaong, Silang, Cavite)	19 Jan. 2012 11:58	N 14°14'35" E120°59'09.5"	8.0	23	Clear	4.5	< 0.01	17,000 MPN/100 mL	7.7 mg/L	1.1 mg/L	314 μ/cm
Sta. 2 Lumbia River (Brgy. Sto. Domingo, Sta. Rosa City, Laguna)	19 Jan. 2012 13:49	N 14°14'20.3" E120°02'59.9"	7.6	28	Clear	10.2	< 0.01	24,000 MPN/100 mL	7.3 mg/L	1.3 mg/L	356 μ/cm
Sta.3 Malindig River (Bridge along Laguna Blvd. Boundary of Biñan & Sta. Rosa Cities)	27 Jan. 2012 10:40	N 14°15'45.6" E121°03'17.2"	6.9	24	Clear	9.8	< 0.01	160,000 MPN/100 mL	6.2 mg/L	2.2 mg/L	370 μ/cm
DENR Standards for Class "C" Waters		6.5 - 8.5	Max. 3°C increase		Not more than 30 mg/L increase	0.05	5,000 MPN/100 mL	Not less than 5.0 mg/L	Not more than 20 mg/L increase	-	



Plate No. 15 On-site pH measurement of the water sample collected from Malaking Ilog River (Sta. 1).

Water sample collection at water sampling **Sta. 2**, Lumbia River on 19 January 2012. Plate No. 16

Temperature measurement of sample collected from Malindig River, **Sta. 3** using a laboratory thermometer. Plate No. 17

2.3 THE AIR

2.3.1 Meteorology

The nearest synoptic meteorological stations in the study area are **NAS UPLB Los Baños**, **Laguna**, on the north and **Sangley Point**, **Cavite City** on the south.

The Philippines has **four** (**4**) recognized climate types which are based on rainfall distribution. According to the Modified Corona Classification, climate pattern in the study area belongs to **Type 1**. This climate type is characterized by **two** (**2**) distinct seasons: dry from November to April, and wet during the rest of the year. Maximum rain period is expected from June to September.

Figure 2.3.1-1 presents the climate map of the Philippines.

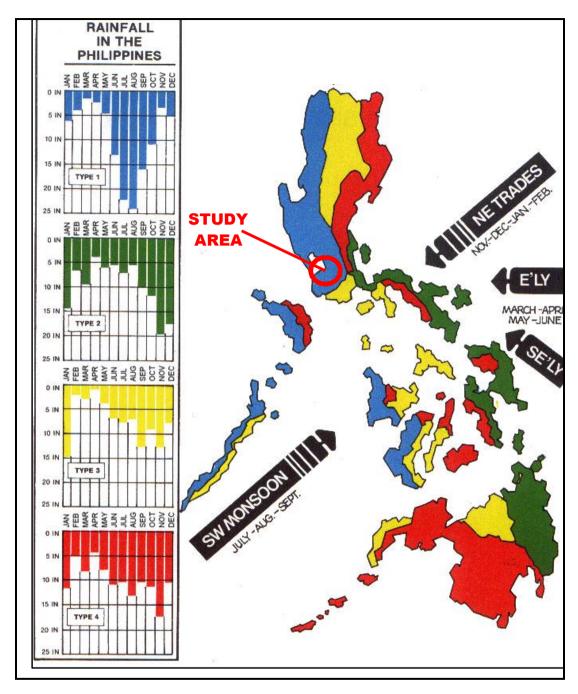


Figure 2.3.1-1 Climate Map of the Philippines

- **Type I:** There are two pronounced seasons: The dry season (from November to April) and wet season (rest of the year).
- Type II: There is no dry season under this classification, with a very pronounced rainfall
- from November to January. **Type III:** Seasons are not very pronounced. It is relatively dry from November to April,
- and wet during the rest of the year.
- **Type IV:** Rainfall is more or less evenly distributed throughout the year under this classification.

2.3.1.1 Rainfall

The summer monsoon brings heavy rains in the study area from May to October. Monsoon rains, although hard and drenching, are not normally associated with high winds and waves. The annual rainfall can be highly attributed to tropical cyclones that enter the Philippine Area of Responsibility (PAR) – the designated area assigned to the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) to monitor during weather disturbances.

The climatological normal values presented in **Table 2.3.1-1a** show that the Municipality of Silang and the entire Province of Cavite receive an annual rainfall of **2078.4 mm**. During the rainy months of June to October, the average rainfall recorded is **342.1 mm**. The month of August recorded the highest amount of rainfall of **457.2 mm** and the most number of rainy days of **21**. Occasional shower is also experienced during the summer month of March. The amount of rainfall recorded is during this time is **9.4 mm**.

As can be deciphered from **Table 2.3.1-1b**, the recorded average rainfall from June to November in the Cities of Santa Rosa and Biñan, Laguna is **257.6 mm**. The month of October yields the highest amount of rainfall of **321.4 mm**, while the most number of rainy days was recorded in July, with **21 days**. During the month of March, the western part of Laguna experiences very few rainy days of **6**. Minimal amount of rainfall of **26.3 mm** is recorded during the heart month of February.

3.3.1.2 Temperature

Moderately warm temperature is felt in in Santa Rosa and Biñan Cities from March to November. The weather station located at NAS UPLB, Los Baños, Laguna measured that the maximum temperature felt in both cities ranged from 30.8°C to 34.5°C, while the minimum temperature recorded ranged between 22.0°C to 24.1°C. During the summer months of March to May in Silang, from a cool 24.6°C the temperature can heat up to a scorching 34.4°C. From March to November the maximum temperature range is between 31.1°C to 34.4°C.

The study area will take a break from the warm weather and experience cooler temperature when the easterly winds begin to blow starting from December and lasting up to February. The recorded average mean temperature between these months in Silang is 26.9°C, while the Cities of Santa Rosa and Biñan is 25.7°C. Comparatively, cooler weather is felt in Santa Rosa and Biñan tah in Silang during From March to November.

2.3.1.3 Relative Humidity

Moisture content of the atmosphere in the whole study area is at its highest in the months of August and December, with 83% and 84%, respectively. On the contrary, Silang experiences a low humidity of 71% in April. Similarly, Santa Rosa and Biñan Cities have a low humidity of 76% in April and May. The annual relative humidity in the Cavite area is 78%, while Santa Rosa and Biñan have an annual relative humidity of 81%.

2.3.1.4 Tropical Cyclones (Typhoons)

The Philippines sit astride the typhoon belt, and the country suffers an annual onslaught of dangerous storms from July through October. These are especially hazardous for northern and eastern Luzon and the Bicol and Eastern Visayas regions, but Manila gets devastated periodically as well.

Typhoon is locally termed as "*Bagyo*". Statistics from PAGASA showed that from 1948 to 2004, around an average of **20** storms and/or typhoons per year enter the PAR. In 1993, a record 19 typhoons made landfall in the country making it the most in one year. Historically, the deadliest tropical cyclone to impact the Philippines was "Uring" (Tropical Storm Thelma) which caused floods that killed thousands of people in 1991.

Typhoons are categorized into **four** (**4**) types according to its wind speed by the PAGASA. All tropical cyclones, regardless of strength, are named by PAGASA.

- Tropical Depressions have maximum sustained winds of between 55 kilometres per hour (30 kn) and 64 kilometres per hour (35 kn) near its center;
- Tropical Storms have maximum sustained winds of 65 kilometres per hour (35 kn) and 119 kilometres per hour (64 kn);
- Typhoons achieve maximum sustained winds of 120 kilometres per hour (65 kn) to 185 kilometres per hour (100 kn); and
- Super typhoons having maximum winds exceeding 185 kilometres per hour (100 kn)

2.3.1.5 Wind

East Southeasterly (ESE) winds prevail in the Province of Cavite during the months of October through June. It has a recorded wind speed of **3 m/s**. Westerly winds on the other hand prevail from July to September.

In Laguna, the northeasterly winds prevail from November through May with a measured wind speed of **2 m/s**. The easterly winds meanwhile prevail during the months of June through October.

Table 2.3.1-1a Climatological Normal Values

Station Name: Sangley Point, Cavite City Period: 1981-2010

Period: 1981-201 Latitude: 14.5 N Longitude: 120.9 E Elevation: 3.0 m

MONTH	RAINI	FALL	TEMPERATURE			Vapor Pressure (MBS) Relative Humidity (%)	Mean Sea Level Pres	WIND		Cloud Amount (okta)	Number wi	of Days th				
	Amount (mm)	No. Of RD	Maximum (°C)	Minimum (°C)	Mean (°C)	Dry Bulb (°C)	Wet Bulb (°C)	Dew Point (°C)			(mbs)	Direction (16 pt)	Speed (mps)		Thunder storm	Light- ning
JAN	16.9	4	30.0	23.3	26.6	26.8	23.9	22.8	27.7	79	1012.5	ESE	3	5	0	0
FEB	11.1	2	30.8	23.6	27.2	27.4	24.1	22.9	27.7	76	1012.7	ESE	3	5	0	0
MAR	9.4	2	32.7	24.6	28.6	28.7	25.0	23.7	29.1	74	1012.1	ESE	3	4	1	1
APR	18.5	2	34.4	25.9	30.1	30.3	26.0	24.6	30.6	71	1010.5	ESE	3	4	2	5
MAY	139.1	9	34.1	26.1	30.1	30.3	26.5	25.3	32.0	74	1008.8	ESE	3	5	11	16
JUNE	264.5	15	32.8	25.8	29.3	29.5	26.4	25.4	32.3	78	1008.4	ESE	3	6	14	18
JULY	422.4	20	31.7	25.3	28.5	28.6	26.0	25.1	31.8	81	1008.0	W	3	6	16	17
AUG	457.2	21	31.3	25.2	28.3	28.2	25.8	25.0	31.5	83	1007.6	SW	3	7	13	14
SEP	341.8	19	31.4	25.2	28.3	28.4	25.9	25.1	31.7	82	1008.4	W	3	6	15	16
ОСТ	224.3	15	31.4	25.3	28.4	28.4	25.8	24.9	31.4	81	1009.3	ESE	3	6	9	14
NOV	110.5	11	31.1	25.0	28.1	28.1	25.3	24.3	30.3	80	1010.4	ESE	3	6	4	5
DEC	62.7	7	30.0	23.9	27.0	27.1	24.3	23.3	28.4	79	1011.9	ESE	3	5	1	1
ANNUAL	2078.4	127	31.8	24.9	28.4	28.5	25.4	24.4	30.4	78	1010.1	ESE	3	5	86	107

Source: PAGASA, 2012

Table 2.3.1-1b Normal Values

Station Name: NAS, UPLB, LOS BANOS, LAGUNA

Period: 1977-2003 Latitude: 14°17' N Longitude: 121°25' E

Elevation: m

MONTH	MONTH RAINFALL			TEMPERATURE					Vapor Pressure (MBS)	ssure Humidity	Mean Sea Level Pres (mbs)	WIND		Cloud Amou nt (okta)	Number wit	
	Amount (mm)	No. Of RD	Maximum (°C)	Minimum (°C)	Mean (°C)	Dry Bulb (°C)	Wet Bulb (°C)	Dew Point (°C)			(mbs)	Direction (16 pt)	Speed (mps)		Thunder storm	Light- ning
JAN	39.0	11	29.6	21.3	25.5	24.9	22.7	21.8	26.3	83	N.A.	Е	2	5	N.A.	N.A.
FEB	26.3	7	30.6	21.2	25.9	25.3	22.9	21.9	26.4	81	N.A.	NE	2	5	N.A.	N.A.
MAR	38.8	6	32.3	22.0	27.1	26.8	23.8	22.7	27.6	78	N.A.	NE	2	4	N.A.	N.A.
APR	41.8	7	34.2	23.3	28.8	26.8	25.1	24.0	29.8	76	N.A.	NE	2	4	N.A.	N.A.
MAY	125.8	12	34.5	24.1	29.3	29.4	26	24.9	31.5	76	N.A.	NE	2	4	N.A.	N.A.
JUNE	212.4	18	33.4	24.0	28.7	28.6	25.9	25.0	31.8	81	N.A.	E	2	5	N.A.	N.A.
JULY	308.0	21	32.4	23.6	28.0	27.8	25.5	24.7	31.2	83	N.A.	E	2	6	N.A.	N.A.
AUG	250.7	19	32.3	23.7	28.0	27.8	25.4	24.5	30.8	82	N.A.	SW	3	6	N.A.	N.A.
SEP	228.3	19	32.2	23.5	27.8	27.7	25.4	24.6	30.9	83	N.A.	E	2	6	N.A.	N.A.
ОСТ	321.4	20	31.6	23.4	27.5	27.2	25.0	24.2	30.3	83	N.A.	E	2	6	N.A.	N.A.
NOV	224.7	20	30.8	23.1	26.9	26.7	24.5	23.7	29.4	83	N.A.	NE	2	6	N.A.	N.A.
DEC	153.0	16	29.4	22.1	25.8	25.4	23.2	22.4	27.2	84	N.A.	NE	2	6	N.A.	N.A.
ANNUAL	1970.0	176	32.0	23.0	27.5	27.2	24.7	23.8	29.5	81	N.A.	NE	2	5	N.A.	N.A.

Source: PAGASA, 2012

2.3.2 Air Quality

Ambient air quality sampling in the study area was conducted at six (6) selected sites to establish the existing level of air pollutants that may be influenced by the proposed CALA Expressway project. The sites chosen are those adjacent to air pollution sensitive receptor areas. Sampling was undertaken twice in a day to determine the pollutant levels during the morning and afternoon period. The sampling was done in conformity with the National Ambient Air Quality Standards (NAAQS) of the Department of Environment and Natural Resources (DENR). Locations of the air quality sampling stations are presented in Figure 2.3.2-1.

Station	Time and Date	(Conc	Parameters entration in μg/	Ncm)
		TSP	SO ₂	NO ₂
AQL1 Aguinaldo Highway	0830-0930H 23 Dec 2011	64	29	9
Brgy. Biga II, Silang Cavite	1335-1435H 22 Dec 2011	72	27	11
AQL2 Along Silang-GMA Road	0655-0755H 23 Dec 2011	118	31	10
Brgy Sabutan, Silang, Cavite	1402-1502H 22 Dec 2011	95	30	11
AQL3 Along Sabutan-Tibig	0948-1048H 23 Dec 2011	20	19	4
Barangay Road Brgy. Tibig, Silang, Cavite	1647-1747H 22 Dec 2011	51	19	3
AQL4 Nuvali-Laguna Blvd	1007-1107H 06 Feb 2012	119	27	7
Near Entrance Gate of West Groove Subdivision, Santo Domingo, Santa Rosa City, Laguna	1550-1650H 06 Feb 2012	102	25	8
AQL5 Laguna Blvd	0645-0745H 07 Feb 2012	147	29	9
Near Laguna Techno Park Gate Brgy. Malamig, Biñan City, Laguna	1320-1420H 06 Feb 2012	102	24	6
AQL6 Mamplasan Interchange	0840-0940H 13 Jan 2012	98	24	9
Fronting Greenfields Subdivision Gate, Mamplasan, Biñan, Laguna	1300-1400H 13 Jan 2012	89	20	8
DENR Standards (1-hour Sampling	g Average)	Not more than 300 μg/Ncm	Not more than 340 μg/Ncm	Not more than 260 μg/No

2.3.2.1 Total Suspended Particulates (TSP)

Result of the monitoring undertaken at all sampling stations showed that the existing TSP levels both in the morning and in the afternoon are **well within the DENR Standard** for a 1 hour sampling period (300 µg/Ncm). As can be discerned from **Table 2.3.2-1**, the average TSP level observed at the sampling sites ranged from 20 µg/Ncm to 147 µg/Ncm, the highest of which was recorded during the morning sampling at Sta. 6 (Nuvali-Laguna Blvd). The lowest TSP level of 20 µg/Ncm was obtained in Brgy. Tibig (Sta. 3) also during the morning sampling.

2.3.2.2 Gaseous Air Pollutants (SO₂ & NO₂)

The SO_2 levels observed in all the sampling sites **do not exceed the required** standard of the DENR (340 µg/Ncm) for a 1 hour sampling period. In fact, the recorded concentration levels presented in Table 2.3.2-1, which ranged between 19 µg/Ncm to 31 µg/Ncm are way below the permissible limit. It can also be discerned from the Table that a relative higher SO_2 concentration levels of 31 µg/Ncm and 30 µg/Ncm were recorded at Sta. 2 (Brgy. Sabutan) during the morning and afternoon sampling periods, respectively.

Similarly, the measured NO_2 concentration levels at the **six** (6) sampling stations within the 1 hour period are **well within the DENR standard** (260 µg/Ncm). The concentration level range is between 3 µg/Ncm to 11 µg/Ncm. The highest NO2 concentration of 11 µg/Ncm was recorded at Sta.1 during the afternoon monitoring period and at Sta. 2 during the morning sampling. The lowest concentration level of 3 µg/Ncm was measured at Sta. 3 during the afternoon sampling time.

Figure 2.3.2-2 illustrates the graphical output of the measured air quality for the all the sampling stations.

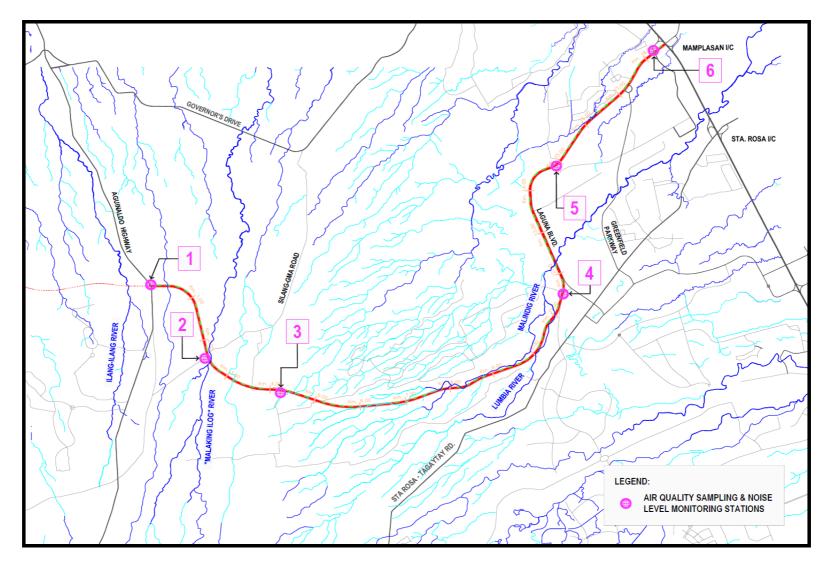


Figure 2.3.2-1 Air Quality and Noise Level Sampling Map

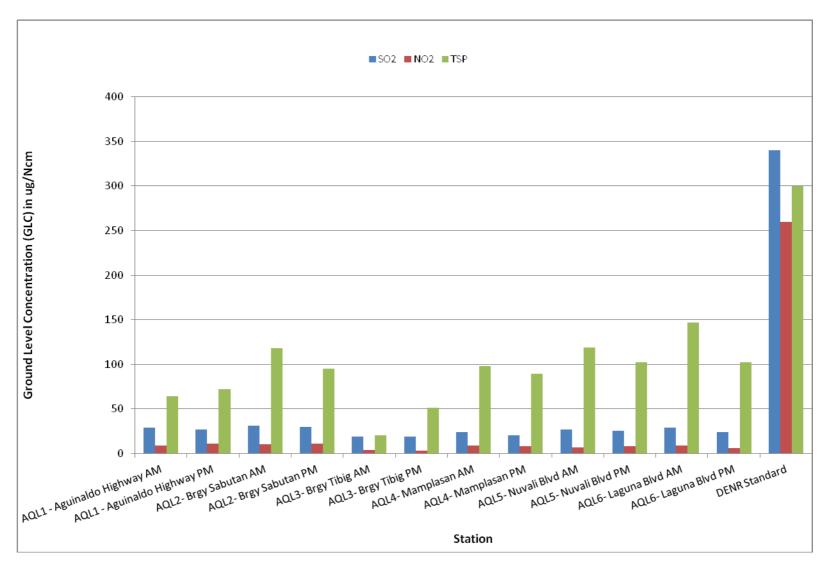


Figure 2.3.3-2 Graph of Measured Pollutants Ground Level Concentrations (GLCs) for the CALA Expressway Project

2.3.2.3 Air Quality Modeling

Result of the ambient air quality modeling is attached as **Appendix A**.

Plate No. 18 Ambient TSP level sampling along E. Aguinaldo Highway, Brgy. Biga II, Silang, Cavite (Sta. 1) using a Staplex High-Volume Sampler (indicated by the red marking).

Plate No. 19 Sulfur Dioxide (SO₂) and Nitrogen Dioxide (NO₂) level measurement at the residential area in along Silang-GMA Road in Brgy. Sabutan, Silang Cavite (Sta. 2) on 22 December 2011.

TSP level monitoring along the Sabutan-Tibig Road (Sta. 3) in Brgy. Tibig, Silang, Cavite on Plate No. 20 22 & 23 December 2011.

Plate No. 21 Afternoon TSP level monitoring along the Nuvali-Laguna Boulevard, Brgy. Santo Domingo, Sta. Rosa City, Laguna, Sta. 4.

Morning and afternoon SO_2 and NO_2 level measurement at $\mbox{\bf Sta. 5},$ Laguna Boulevard. Plate No. 22

Plate No. 23 Morning SO_2 and NO_2 level measurement at $\mbox{\bf Sta.}$ 6, Brgy. Mamplasan, Biñan City, Laguna on 13 January 2012.

2.3.3 Noise Level

Monitoring of the ambient noise level along the noise sensitive receptor areas traversed by the proposed CALA Expressway alignment was concurrently undertaken with the air quality sampling. Both monitoring activities were conducted at the same sampling sites (please refer back to **Figure 2.3.2-1**).

Noise levels within a 30-second average period using a Center 322 Datalogging sound level meter on A-weighting scale. Noise averaging was performed during morning time (5:00-9:00 AM), daytime (9:00 AM-6:00 PM), evening time (6:00-10:00 PM), and nighttime (10:00 PM-5:00 AM). The noise standards utilized are categories Class B and Class C. Class B is "A section which is primarily use for commercial purposes", while Class C "A section which is primarily reserved as a light industrial area".

2.3.3.1 Ambient Noise Level

Generally, the recorded average noise levels at the sampling sites established along the proposed alignment are **typical for an urban area** due to the relatively significant traffic volume.

Unsurprisingly, the highest noise levels for all monitoring time periods were recorded at Sta. 2, exceeding the DENR standards for both categories. This can be attributed primarily to the significant traffic volume plying the E. Aguinaldo Highway. As shown in **Table 3.3.1-1**, the observed noise levels at Sta. 1 are **80.8 dBA** (daytime), **74.0 dBA** (morning), **70.1 dBA** (evening), and **66.2 dBA** (nighttime)

On the contrary, noise levels recorded at **Sta. 3** during the morning time, daytime, evening time, and nighttime periods are within the DENR standards for both Class B and C categories. At the said station, the average noise level measured are **52.4 dBA** (morning), **52.6 dBA** (daytime), **54.9 dBA** (evening), and **47.6 dBA** (nighttime).

A closer look at the **Table** will show that the nighttime noise level measured at Sta. 2, 4, 5 are still within the permissible limits for both categories. The nighttime noise level recorded ranges between **49.6-60.0 dBA**. It can in also be discerned that the daytime noise levels measured at Sta. 2 (**59.6 dBA**) and Sta. 4 (**63.6 dBA**) are within the permissible limits. The average evening time noise level observed at Sta. 2 (**59.4 dBA**), Sta. 3 (**54.9 dBA**), and Sta. 6 (**55.6 dBA**), are within the DENR standards of **60 dBA** and **65 dBA** for Class B and Class C categories, respectively.

Sampling Location	Monitoring Period	Date & Time	Average	NPCC S	tandards
			Noise Level (in dBA)	Class B*	Class C**
Sta. 1 Aguinaldo Highway	Morning	23 December 2011 5:03:48-6:08:18 AM	74.0	60	65
Brgy. Biga II, Silang Cavite	Daytime	23 December 2011 10:44:25-11:48:55 AM	80.8	65	70
	Evening	22 December 2011 7:49:09-8:43:39 PM	70.1	60	65
Sta. 2	Nighttime	23-24 December 2011 11:55:05 PM-12:59:35 AM	66.2	55	60
Along Silang-GMA Road	Morning	23 December 2011 7:50:01-8:54:31 AM	58.7	60	65
Brgy Sabutan, Silang, Cavite	Daytime	22 December 2011 2:04:09-3:08:39PM	59.6	65	70
	Evening	22 December 2011 6:31:19-7:36:09 PM	59.4	60	65
	Nighttime	22 December 2011 10:29:25-11:33:55 PM	57.5	55	60
Sta. 3 long Sabutan-Tibig Barangay Road	Morning	23 December 2011 5:03:48-6:08:18 AM	52.4	60	65
Brgy. Tibig, Silang, Cavite	Daytime	22 December 2011 3:33:46-4:38:16 PM	52.6	65	70
	Evening	22 December 2011 8:57:11-10:01:41 PM	54.9	60	65
	Nighttime	23 December 2011 1:17:26-2:21:56 AM	47.6	55	60

Class B* "A section which is primarily use for commercial purposes"

Class C** "A section which is primarily reserved as a light industrial area".

Table 2.3.3-1 Observed Ambient Noise Level at the Selected Sampling Sites Along the Proposed CALA Expressway Alignment (2/2)

Sampling Location	Monitoring Period	Date & Time	Average	NPCC S	tandards
			Noise Level (in dBA)	Class B*	Class C**
Sta. 4	Morning		69.4	60	65
Nuvali-Laguna Blvd Near Entrance Gate of West Groove	Daytime	06 January 2012 10:21:17-11:25:47 AM	66.4	65	70
Subdivision, Santo Domingo, Santa Rosa City, Laguna	Evening	06 January 2012 6:05:17-7:09:47 PM	55.6	60	65
	Nighttime	07 January 2012 1:02:25-2:06:55 AM	51.5	55	60
Sta. 5	Morning		64.5	60	65
Laguna Blvd Near Laguna Techno Park Gate Brgy. Malamig, Biñan City, Laguna	Daytime	06 January 2012 2:28:54-3:33:24 PM	63.6	65	70
	Evening	06 January 2012 7:21:54-8:26:24 PM	70.6	60	65
	Nighttime	07 January 2012 11:43:11-12:47:41 AM	49.6	55	60
Sta. 6 Mamplasan Interchange	Morning	13 January 2012 7:24:49–8:29:19 AM	63.8	60	65
Fronting Greenfields Subdivision Gate, Mamplasan, Biñan City, Laguna	Daytime	13 January 2012 12:05:10-1:09:40 PM	68.1	65	70
	Evening	06 January 2012 8:51:46-9:56:16 PM	63.1	60	65
	Nighttime	06 January 2012 10:10:46-11:15:16 PM	60.0	55	60

Class B* "A section which is primarily use for commercial purposes"

Class C** "A section which is primarily reserved as a light industrial area"

2.3.3.2 Noise Level Modeling

Please refer to **Appendix B** for the result of the noise level modeling conducted in the study area.

Plate No. 24 Daytime noise level monitoring at sampling Sta. 1.

Plate No. 25 Morning time noise level measurement in Brgy. Sabutan, Silang, Cavite (Sta. 2).

Daytime noise level monitoring using a portable **Noise Meter** at sampling **Sta. 3**, Brgy. Tibig, Plate No. 26 Silang, Cavite.

Plate No. 27 Daytime noise level monitoring along the Nuvali-Laguna Blvd. (**Sta. 4**), Sta. Rosa City, Laguna.

Noise level monitoring at sampling **Sta. 5**, Laguna Boulevard, Brgy. Malamig, Biñan City, Plate No. 28 Laguna.

Daytime time noise level monitoring in Brgy. Mamplasan, Biñan City, Laguna. Plate No. 29

2.4 THE PEOPLE

2.4.1 Socio-Economic Survey

Socioeconomic survey of project-affected persons was conducted from February 22, 2012 to March 14, 2012. **Four (4)** types of PAPs were interviewed, namely:

- **Type A** Residential Structure Owner;
- **Type B** those whose farm land would be affected (landowner/tenant and free occupation of land with permit)
- **Type C** is for Secondary Impact Areas (i.e. youth sector, aged sector, business sector, transport group, residential, women's and NGO/POs); and
- **Type D** for Big Land Developers & Real Estate Companies (the team had a hard time in interviewing Type D respondents due to company protocol).

Presented below are basic demographic data followed by an assessment of the affected persons' socio-economic status. Their standard of living and socio-economic status are evaluated using the following data and indicators:

- (i) demography and basic information;
- (ii) primary and secondary source of income;
- (iii) household income and expenditures;
- (iv) type of ownership of structure occupied; and
- (v) type or lighting, water supply and sanitation

2.4.1.1 Demography and Basic Information

Household Population

The household population of respondents is presented in **Table 2.4.1-1.** There is a total of 32 residential structure owner-respondents (Type A) and 31 landowner/tenant/free occupation with permit respondents (Type B). It can be discerned from said table that for both types, there are **more than one household** per dwelling structure; i.e., **Type A** - 32 **respondents** with 44 **households**, and **Type B respondents** - 31 **respondents** with 47 **households**.

Table 2.4.1-1 **Household Population of PAPs Interviewed**

Manaiaina	- Lite / D	No. of	Number	Popula	ation	Tatal
Wiunicipa	ality/Barangay	Respondents	of HH ^a	Male	Female	Total
Type A - Res	sidential/Household	d Structure				
Silang, Cavite	Sabutan	14	18	28	35	63
	Kaong		3	8	5	13
	Tibig	11	13	28	23	51
Biñan, Laguna	Timbao	5	10	15	21	36
Total of Type	A Respondents	32	44	79	84	163
Type B – Fai	rm Lands ^b					
Silang, Cavite	Sabutan	6	17	12	21	33
	Kaong	2	3	8	5	13
	Tibig	7	9	19	19	38
Carmen		16	18	44	57	101
Total of Type	B Respondents	31	47	83	102	185
Total of Type Respondents		63	91	162	186	348

Note:

Household Structure

Majority of the respondents have a nuclear (54%) structure of household, 19% are living alone, 22% are family with extension and 5% sharing in one structure (Please refer to **Table 2.4.1-2**).

a. There are cases where there is more than one (1) household per dwelling structure.

b. For columns shaded yellow, only land will be affected; no structures to be displaced.

Table 2.4.1-2 Households Structure of PAPs Interviewed

Munio	cipality/Baran	gay	Single	Nuclear	Extended	Joint	Total
Type A - Resi	dential/House	hold Structu	ire				
Silang,	Sabutan	Count	2	8	3	1	14
Cavite		% within Barangay	14%	57%	21%	7%	100%
	Kaong	Count	0	1	1	0	2
		% within Barangay	0%	50%	50%	0%	100%
	Tibig	Count	1	8	2	0	11
		% within Barangay	9%	73%	0%	0%	82%
Biñan, Laguna Timbao		Count	0	3	0	2	5
			0%	60%	0%	0%	60%
Total of Type	Δ	Count	3	20	6	3	32
Respondents		% within Barangay	9%	63%	19%	9%	100%
Type B - Farm	n Lands						
Silang,	Sabutan	Count	2	2	4	0	6
Cavite		% within Barangay	33%	0%	67%	0%	100%
	Kaong	Count	0	1	1	0	2
		% within Barangay	0%	50%	50%	0%	100%
	Tibig	Count	2	5	0	0	7
		% within Barangay	29%	71%	0%	0%	100%
	Carmen	Count	5	8	3	0	16
		% within Barangay	31%	50%	19%	0%	100%
Total Type B	Total Tuna P	Count	9	14	8	0	31
	Respondents		29%	45%	26%	0%	100%
Total of Type A	and P	Count	12	34	14	3	63
Total of Type A Respondents	Tailu D	% within Barangay	19%	54%	22%	5%	100%

<u>Language</u>

The dialect used by 95% of the respondents is Tagalog. This is followed by 'Ilocano", "Bicolano", and "Ilongo". Details are shown in Table 2.4.1-3.

Table 2.4.1-3 Ethno Linguistic Affiliation of the Respondents (1 of 2)

City/N	Municipality	/Barangay	Tagalog	llocano	Bicolano	llonggo	Total
Type A -	Residential	/Household Stru	ucture				
Silang, Cavite	Sabutan	Count	13	1	0	0	14
		% within Barangay	93%	7%	0%	0%	100%
	Kaong	Count	2	0	0	0	2
		% within Barangay	100%	0%	0%	0%	100%
	Tibig	Count	11	0	0	0	11
		% within Barangay	100%	0%	0%	0%	100%
Biñan, Laguna	Timbao	Count	5	0	0	0	5
		% within Barangay	100%	0%	0%	0%	100%
		Count	31	1	0	0	32
Total		% within Barangay	97%	3%	0%	0%	100%
Type B -	Farm Lands	•					
Silang, Cavite	Sabutan	Count	5	0	1	0	6
		% within Barangay	83%	0%	17%	0%	100%
	Kaong	Count	2	0	0	0	2
		% within Barangay	100%	0%	0%	0%	100%
	Tibig	Count	7	0	0	0	7
		% within Barangay	100%	0%	0%	0%	100%

Table 2.4.1-3 Ethno Linguistic Affiliations of the Respondents (2 of 2)

City/N	/Junicipality	/Barangay	Tagalog	llocano	Bicolano	llonggo	Total			
Type B -	Туре В - Farm Lands									
	Carmen	Count	15	0	0	1	16			
		% within Barangay	94%	0%	0%	6%	100%			
Total Typ	na R	Count	29	0	1	1	31			
Respond		% within Barangay	94%	0%	3%	3%	100%			
Total of Type A and		Count	60	1	1	1	63			
B Respoi		% within Barangay	95%	2%	2%	2%	100%			

Educational Attainment

The level of educational attainment of the male project affected respondents in the host cities/municipality is presented in Table 2.4.1-4. Majority of the male were able to finish secondary schooling. As seen from this table, 52% of the respondents were able to finish the secondary education, 30% primary education and 11% successfully finished college. The 4% has taken up vocational and postgraduate level while the remaining 3% was not able to go to school.

Table 2.4.1-4 Educational Attainment of Male (1 of 2)

City/Mu	City/Municipality/Barangay			В	С	D	E	F	Total		
Type A - R	Гуре A - Residential/Household Structure										
Silang,	Sabutan	Count	4	8	2	0	0	0	14		
Cavite		% within Barangay	29%	57%	14%	0%	0%	0%	100%		
	Kaong	Count	1	1	0	0	0	0	2		
		% within Barangay	50%	50%	0%	0%	0%	0%	100%		
	Tibig	Count	3	7	1	0	0	0	11		
		% within Barangay	27%	64%	9%	0%	0%	0%	100%		

Table 2.4.1-4 Educational Attainment of Male (2 of 2)

City/Muni	icipality/B	arangay	Α	В	С	D	Е	F	Total			
Type A - Re	sidential/	Household	Structure	•								
Biñan, Laguna	Timbao	Count	1	3	1	0	0	0	5			
J		% within Barangay	20%	60%	20%	0%	0%	0%	100%			
Total of Type A		Count	9	19	4	0	0	0	32			
Total of Type A - Respondents		% within Barangay	28%	59%	13%	0%	0%	0%	100%			
Type B - Farm Lands												
Silang,	Sabutan	Count	1	1	1	1	1	1	6			
Cavite		% within Barangay	17%	17%	17%	17%	17%	17%	100%			
	Kaong	Count	1	1	0	0	0	0	2			
		% within Barangay	50%	50%	0%	0%	0%	0%	100%			
	Tibig	Count	2	2	2	0	0	1	7			
		% within Barangay	29%	29%	29%	0%	0%	14%	100%			
	Carmen	Count	6	10	0	0	0	0	16			
		% within Barangay	38%	63%	0%	0%	0%	0%	100%			
Total of Type	e B	Count	10	14	3	1	1	2	31			
Respondents		% within Barangay	32%	45%	10%	3%	3%	6%	100%			
Total of Tyr	ne A and	Count	19	33	7	1	1	2	63			
	Total of Type A and B Respondents		30%	52%	11%	2%	2%	3%	100%			
Note: A – Primary	Note: A – Primary; B – Secondary; C – Tertiary; D – Vocational; E – Post-Graduate; F - None											

Table 2.4.1-5 shows the educational attainment of women, which has majority (41%) who are able to finish secondary or high school education, seconded by 24% primary education. Female respondents who were able to finish college has a higher percentage (17%) compared to the male respondents.

Table 2.4.1-5 Educational Attainment of Female

City/Municipality/Barangay			Primary	Secondary	Tertiary	Vocational	Post Graduate	None	Total
Type A -	Residentia	l/Household	Structure						
Silang, Cavite	Sabutan	Count	2	8	1	1	0	2	14
		% within Barangay	18%	45%	9%	9%	0%	18%	100%
	Kaong	Count	0	2	0	0	0	0	2
		% within Barangay	0%	100%	0%	0%	0%	0%	100%
	Tibig	Count	2	5	1	1	0	2	11
		% within Barangay	18%	45%	9%	9%	0%	18%	100%
Biñan, Laguna	Timbao	Count	1	3	1	0	0	0	5
		% within Barangay	18%	45%	9%	9%	0%	18%	100%
Total of Type A Respondents		Count	5	18	3	2	0	4	32
		% within Barangay	16%	56%	9%	6%	0%	13%	100%
Type B -	Farm Land	ds							
Silang, Cavite	Sabutan	Count	2	1	2	0	1	0	6
		% within Barangay	33%	17%	33%	0%	17%	0%	100%
	Kaong	Count	0	2	0	0	0	0	2
		% within Barangay	0%	100%	0%	0%	0%	0%	100%
	Tibig	Count	2	1	3	0	0	1	7
		% within Barangay	29%	14%	43%	0%	0%	14%	100%
	Carmen	Count	6	4	3	0	3	0	16
		% within Barangay	38%	25%	19%	0%	19%	0%	100%
Total of Type B Respondents		Count	10	8	8	0	4	1	31
		% within Barangay	32%	26%	26%	0%	13%	3%	100%
Total of Type A and B Respondents		Count	15	26	11	2	4	5	63
		% within Barangay	24%	41%	17%	3%	6%	8%	100%

A – Primary; B – Secondary; C – Tertiary; D – Vocational; E – Post-Graduate; F - None

Table 2.4.1-6 shows that children who were able to finish college education have a high percentage of 32% and 50% are still studying. Approximately 18% of the children are out of school youth.

Table 2.4.1-6 Education of Children

City/Mui	nicipality/Bara	ingay	Finished College	Schooling	Out of School	Total					
Type A - Residential/Household Structure											
Silang, Cavite	Sabutan	Count	4	15	7	26					
		% within Barangay	15%	58%	27%	100%					
	Kaong	Count	1	2	0	3					
		% within Barangay	33%	67%	0%	100%					
	Tibig	Count	2	5	2	9					
		% within Barangay	22%	56%	22%	100%					
Biñan, Laguna	Timbao	Count	1	3	0	4					
		% within Barangay	25%	75%	0%	100%					
		Count	8	25	9	42					
Total of Type A R	espondents	% within Barangay	19%	60%	21%	100%					
Type B - Farm L	ands										
Silang, Cavite	Sabutan	Count	6	5	1	12					
		% within Barangay	50%	42%	8%	100%					
	Kaong	Count	1	2	0	3					
		% within Barangay	33%	67%	0%	100%					
	Tibig	Count	3	6	2	11					
		% within Barangay	27%	55%	18%	100%					
	Carmen	Count	17	17	8	42					
		% within Barangay	40%	40%	19%	100%					
		Count	27	30	11	68					
Total of Type B R	espondents	% within Barangay	40%	44%	16%	100%					
Total of Type A a	and B	Count	35	55	20	110					
Respondents	ind B	% within Barangay	32%	50%	18%	100%					

2.4.2 Socioeconomic Characteristics

Socioeconomic characteristics of the PAPs are described in this section based on the results of the survey conducted for Type A and B respondents. The Project-affected persons' standard of living and socioeconomic status shall be evaluated using the following indicators:

- (i) household income and expenditures;
- (ii) type and ownership of structure occupied;
- (iii) source of lighting,
- (iv) source of water supply, and
- (v) type of sanitation facilities

2.4.2.1 Household Income and Expenditures

The occupations of Project-affected persons interviewed primarily are farming (43%) and employment (24%). Shown on **Table 2.4.2-1** are the primary occupations of PAPs and **Table 2.4.2-2**, the secondary. These results show that majority of the affected land is agricultural land and that the main livelihood to be displaced is farm income.

Table 2.4.2-1 Primary Occupation of PAPs (1 of 2)

City/M	unicipality/E	Barangay	Employee	Driver	Construction	Farmer	Factory Worker	Own business	OFW	Total
Type A -	Residentia	ıl/Household	l Structure							
Silang,	Sabutan	Count	4	1	3	3	2	1	0	14
Cavite		% within Barangay	29%	7%	21%	21%	14%	7%	0%	100%
	Kaong	Count	0	0	0	2	0	0	0	2
		% within Barangay	0%	0%	0%	100%	0%	0%	0%	100%
	Tibig	Count	4	2	0	1	3	1	0	11
		% within Barangay	36%	18%	0%	9%	27%	9%	0%	100%
	Timbao	Count	3	1	0	0	0	1	0	5
Biñan, Laguna		% within Barangay	60%	20%	0%	0%	0%	20%	0%	100%
	Count		11	4	3	6	5	3	0	32
Total of Type A % within Barangay		18%	9%	18%	27%	18%	9%	0%	100%	

Table 2.4.2-1 Primary Occupation of PAPs (2 of 2)

City/M	City/Municipality/Barangay		Employee	Driver	Construction	Farmer	Factory Worker	Own business	OFW	Total
Туре В -	- Farm Land	ds								
Silang,	Sabutan	Count	2	1	0	2	0	0	1	6
Cavite		% within Barangay	33%	17%	0%	33%	0%	0%	17%	100%
	Kaong	Count	0	0	0	2	0	0	0	2
		% within Barangay	0%	0%	0%	100%	0%	0%	0%	100%
	Tibig	Count	1	0	0	6	0	0	0	7
		% within Barangay	14%	0%	0%	86%	0%	0%	0%	100%
	Carmen	Count	1	0	0	12	2	1	0	16
		% within Barangay	6%	0%	0%	75%	13%	6%	0%	100%
		Count	4	2	0	21	2	1	1	31
Total of Type B % within Barangay		13%	6%	0%	68%	6%	3%	3%	100%	
Total of	Total of Type A Count		15	6	3	27	7	4	1	63
and B			24%	10%	5%	43%	11%	6%	2%	100%

When asked if the Project-affected persons have other source of income aside from the primary income mentioned above, majority of them have no (52%) other income and are dependent only on farming.

Table 2.4.2-2 Secondary Occupation of PAPs

City/M	unicipality/E	Barangay	Employee	Driver	Pensioner	Const Worker	Farmer	OFW	Own business	None	Total
Type A -	Residentia	al/Household	d Structure								
Silang,	Sabutan	Count	0	2	0	1	2	0	3	6	14
Cavite		% within Barangay	0%	14%	0%	7%	14%	0%	21%	43%	100%
	Kaong	Count	0	0	0	0	0	0	0	2	2
		% within Barangay	0%	0%	0%	0%	0%	0%	0%	100%	100%
	Tibig	Count	3	1	0	1	0	0	0	6	11
		% within Barangay	27%	9%	0%	9%	0%	0%	0%	55%	100%
Biñan,	Timbao	Count	0	1	0	0	0	0	0	4	5
Laguna		% within Barangay	0%	20%	0%	0%	0%	0%	0%	80%	100%
		Count	3	4	0	2	2	0	3	18	32
Total of T	ype A	% within Barangay	9%	13%	0%	6%	6%	0%	9%	56%	100%
Type B -	Farm Lan	ds									
Silang,	Sabutan	Count	0	1	0	0	3	1	0	1	6
Cavite		% within Barangay	0%	17%	0%	0%	50%	17%	0%	17%	100%
	Kaong	Count	0	0	0	0	0	0	0	2	2
		% within Barangay	0%	0%	0%	0%	0%	0%	0%	100%	100%
	Tibig	Count	1	1	1	0	1	0	0	3	7
		% within Barangay	14%	14%	14%	0%	14%	0%	0%	43%	100%
	Carmen	Count	3	0	0	2	2	0	0	9	16
		% within Barangay	19%	0%	0%	13%	13%	0%	0%	56%	100%
		Count	4	2	1	2	6	1	0	15	31
Total of 1	ype B	% within Barangay	13%	6%	3%	6%	19%	3%	0%	48%	100%
Total of	Туре А	Count	7	6	1	4	8	1	3	33	63
and B Respond		% within Barangay	11%	10%	2%	6%	13%	2%	5%	52%	100%

Table 2.4.2-3 shows the monthly family income bracket of the Project-affected persons interviewed, 24% of them are earning between 6,001 to 15,000 and 22%

have income bracket of 10,001 to 15,000. Five percent **5%** of them are earning 3,000 or less and fall below the annual food threshold for family of **four** (**4**) for the Provinces of Cavite and Laguna; that is, **Php46,120** and **Php43,071** respectively based on National Statistical Yearbook 2010 under Region IV-A.

Table 2.4.2-3 Monthly Family Income (1 of 2)

City/M	City/Municipality/Barangay		3,000 or less	3,001 to 6,000	6,001 to 10,000	10,001 to 15,000	15,001 to 20,000	20,001 to 30,000	30,001 to 40,000	40,001 to 50,000	50,001 to 60,000	60,001 or more	TOTAL
Type A -	Residenti	al/Househol	d Structi	ıre									
Silang,	Sabutan	Count	1	1	3	6	0	1	1	0	0	1	14
Cavite		% within Barangay	7%	7%	21%	43%	0%	7%	7%	0%	0%	7%	100%
	Kaong	Count	0	0	0	1	0	0	0	0	0	1	2
		% within Barangay	0%	0%	0%	50%	0%	0%	0%	0%	0%	50%	100%
	Tibig	Count	1	1	1	3	3	1	1	0	0	0	11
		% within Barangay	9%	9%	9%	27%	27%	9%	9%	0%	0%	0%	100%
Biñan,	Timbao	Count	0	0	2	0	1	0	0	1	0	1	5
Laguna		% within Barangay	0%	0%	40%	0%	20%	0%	0%	20%	0%	20%	100%
		Count	2	2	6	10	4	2	2	1	0	3	32
Total of	Туре А	% within Barangay	6%	6%	19%	31%	13%	6%	6%	3%	0%	9%	100%
Type B -	- Farm Lan	ıds											
Silang,	Sabutan	Count	0	0	1	2	0	1	0	0	1	1	6
Cavite		% within Barangay	0%	0%	17%	33%	0%	17%	0%	0%	17%	17%	100%
	Kaong	Count	0	0	1	0	0	0	0	1	0	0	2
		% within Barangay	0%	0%	50%	0%	0%	0%	0%	50%	0%	0%	100%
	Tibig	Count	0	0	2	0	0	1	2	2	0	0	7
		% within Barangay	0%	0%	29%	0%	0%	14%	29%	29%	0%	0%	100%
	Carmen	Count	1	0	5	2	2	5	0	1	0	0	16
		% within Barangay	6%	0%	31%	13%	13%	31%	0%	6%	0%	0%	100%
		Count	1	0	9	4	2	7	2	4	1	1	31
Total of	Туре В	% within Barangay	3%	0%	29%	13%	6%	23%	6%	13%	3%	3%	100%
Total of	Type A	Count	3	2	15	14	6	9	4	5	1	4	63
and B Respond		% within Barangay	5%	3%	24%	22%	10%	14%	6%	8%	2%	6%	100%

Table 2.4.2-4 shows the household expenditures. The bulk of the household expenditures comprises of food (51%) followed by education (25%). Respondents considered that if farming will be lost from their livelihood, food security problem will arise from their displacement. They believe that having a farmland sustain their meal from planting backyard vegetables for daily consumption.

Table 2.4.2-4 Average Annual Household Expenditures of Respondent PAPs (1 of 2)

М	unicipality/Bara	angay	Food	Utilities	Education	Rent	Health	Transportation	Total
Type A – Re	esidential/Hou	sehold Structur	е						
Silang,	Sabutan	Average	68,092	12,678	17,371	1,714	1,653	5,867	7,669
Cavite		% within Barangay	64%	12%	16%	2%	2%	5%	100%
	Kaong	Average	60,000	2,250	12,000	300	2,500	50,000	127,050
		% within Barangay	47%	2%	9%	0%	2%	39%	100%
	Tibig	Average	72,245	7,690	14,463	2,181	2,181	9,796	108,560
		% within Barangay	67%	7%	13%	2%	2%	9%	100%
Biñan,	Timbao	Average	174,720	22,800	6,700	0	0	5,840	210,060
Laguna		% within Barangay	83%	11%	3%	0%	0%	3%	100%
Average		375,057	45,418	50,534	4,195	6,334	71,503	453,339	
Total of Type A % within Barangay		69%	10%	12%	1%	1%	8%	100%	

Source: ECOSYSCORP RAP Team, actual site investigation

Table 2.4.2-4 Average Annual Household Expenditures of Respondent PAPs (2 of 2)

N	Municipality/Bara	angay	Food	Utilities	Education	Rent	Health	Transportation	Total
Type B – F	arm Lands								
Silang,	Sabutan	Count	32,578	32,408	5,688	0	2,835	3,857	10,808
Cavite		% within Barangay	22%	21%	53%	0%	2%	3%	100%
	Kaong	Count	61,200	4,500	11,250	300	2,700	5,625	52,725
		% within Barangay	58%	4%	21%	1%	5%	11%	100%
	Tibig	Count	49,745	23,650	3,861	0	38	19.81	10,591
		% within Barangay	43%	20%	36%	0%	0%	0%	100%
	Carmen	Count	68,321	15,820	1,395	111	918	409.3	8,093
		% within Barangay	53%	12%	17%	1%	11%	5%	100%
		Count	211,844	76,378	22,194	411	6,453	9,911	82,217
Total of Typ	ре В	% within Barangay	39%	17%	35%	1%	5%	3%	100%
	Count		586,901	121,796	2,444,240	4,606	342,441	81,414	535,556
Total of Type A and B % within Barangay		51%	14%	25%	1%	4%	5%	100%	

Source: ECOSYSCORP RAP Team, actual site investigation

Land Ownership

Residential Lands

The respondents' landownership shows in Table 2.4.2-5 that out of 32 Type A respondents 27 owned the land as well, while the remaining five (5) are renting the land where their structures are built.

Farm Lands

With regards to Type B respondents, 12 owned the land, three (3) are tenants and 16 are occupying the farmland with permit from the owner. The said 16 are within Brgy. Carmen. Based on coordination meeting with the SAMACA NGO in Carmen, almost all of the tenants were paid by the developers and signed a waiver in exchange for their farmland. According to said NGO, since the land is not yet used by the developer, the tenants who received payments have been given a permit to continue their farming activity. Please refer to **Table 2.4.2-5** for the tenure status of Type B respondents.

Table 2.4.2-5a Land Tenure Status of Impacted Structures

City/Mu	nicipality/Baran	gay	Owner	Renter	Total
Type A - Resider	ntial/Household	d Structure			
Silang, Cavite	Sabutan	Count	12	2	14
		% within Barangay	86%	14%	100%
	Kaong	Count	1	1	2
			50%	50%	100%
	Tibig	Count	9	2	11
		% within Barangay	82%	18%	100%
Biñan, Laguna	Timbao	Count	5	0	5
		% within Barangay	100%	0%	100%
		Count	27	5	32
Total of Type A F	Respondents	% within Barangay	84%	16%	100%

Table 2.4.2-5b Land Tenure Status of Impacted Farm Lands

City/Mu	ınicipality/Baran	gay	Owner	Tenant	Free occupation with Permit	Total
Type B – Farm L	ands					
Silang, Cavite	Sabutan	Count	6	0	0	6
		% within Barangay	100%	0%	0%	100%
	Kaong	Count	1	1	0	2
		% within Barangay	50%	50%	0%	100%
	Tibig	Count	5	2	0	7
		% within Barangay	58%	42%	0%	100%
	Carmen	Count	0	0	16	16
		% within Barangay	0%	0%	100%	100%
		Count	12	3	16	31
Total of Type B I	Respondents	% within Barangay	39%	10%	51%	100%

Structure Ownership

Table 2.4.2-6 shows that out of 32 households interviewed, 27 of them own the structure and only five (5) are renting.

Table 2.4.2-6 Ownership of Residential Structures

City/Muni	cipality/Bara	angay	Owner	Renter	Total
Silang, Cavite	Sabutan	Count	11	3	14
		% within Barangay	79%	21%	100%
	Kaong	Count	2	0	2
		% within Barangay	100%	0%	100%
	Tibig	Count	9	2	11
		% within Barangay	82%	18%	100%
Biñan, Laguna	Timbao	Count	5	0	5
		% within Barangay	100%	0%	100%
			27	5	32
Total of Type A Respondents		% within Barangay	84%	16%	100%

Availability of Social Services

Power and Water Supply

All the barangays' **power supply** is provided by MERALCO. In terms of water supply, majority of the respondents get their water from artesian well for domestic use such as washing of clothes and dishes (10%), and from barangay water district (46%), while drinking water is being purchased like mineral and distilled water (48%). Please refer to Tables 2.4.2-7a and 2.4.2-7b.

Table 2.4.2-7a Source of Water for Washing Clothes and Dishes

City/Mun	City/Municipality/Barangay			Artesian well	Pump well	Piped	Purchase	Total
Type A - Reside	ential/House	hold Structur	е					
Silang, Cavite	Sabutan	Count	10	1	0	2	1	14
		% within Barangay	71%	7%	0%	14%	7%	100%
	Kaong	Count	0	0	0	1	1	2
		% within Barangay	0%	0%	0%	50%	50%	100%
	Tibig	Count	1	0	0	8	2	11
		% within Barangay	9%	0%	0%	73%	18%	100%
Biñan, Laguna	Timbao	Count	0	0	0	3	2	5
		% within Barangay	0%	0%	0%	60%	40%	100%
		Count	11	1	0	14	6	32
Total of Type A Respondents		% within Barangay	34%	3%	0%	44%	19%	100%

Table 2.4.2-7a Source of Water for Washing Clothes and Dishes

Type B - Farm L	Lands							
Silang, Cavite	Sabutan	Count	1	1	1	2	1	6
		% within Barangay	17%	17%	17%	33%	17%	100%
	Kaong	Count	0	0	0	1	1	2
		% within Barangay	0%	0%	0%	50%	50%	100%
	Tibig	Count	2	0	0	4	1	7
		% within Barangay	29%	0%	0%	57%	14%	100%
	Carmen	Count	4	4	0	8	0	16
		% within Barangay	25%	25%	0%	50%	0%	100%
Total of Time D		Count	7	5	1	15	3	31
Total of Type B Respondents		% within Barangay	23%	16%	3%	48%	10%	100%
Total of Type A	Total of Type A and B		18	6	1	29	9	63
Respondents	Total of Type A and B Respondents		29%	10%	2%	46%	14%	100%

Table 2.4.2-7b Source of Water Supply for Drinking

City/Mun	icipality/Bar	angay	Dug well	Artesian	Piped	Purchase	Total
Type A - Reside	ential/Hous	ehold Structu	re				
Silang, Cavite	Sabutan	Count	3	3	3	5	14
		% within Barangay	21%	21%	21%	36%	100%
	Kaong	Count	0	0	0	2	2
		% within Barangay	0%	0%	0%	100%	100%
	Tibig	Count	2	3	3	3	11
		% within Barangay	18%	27%	27%	27%	100%
Biñan, Laguna	Timbao	Count	0	0	2	3	5
		% within Barangay	0%	0%	40%	60%	100%
Total of Type A		Count	5	6	8	13	32
Respondents		% within Barangay	27%	9%	18%	45%	100%
Type B – Farm	Lands						
Silang, Cavite	Sabutan	Count	0	1	2	3	6
		% within Barangay	0%	17%	33%	50%	100%
	Kaong	Count	0	0	0	2	2
		% within Barangay	0%	0%	0%	100%	100%
	Tibig	Count	2	0	0	5	7
		% within Barangay	29%	0%	0%	71%	100%
	Carmen	Count	2	0	7	7	16
		% within Barangay	13%	0%	44%	44%	100%
Total of Type B		Count	4	1	9	17	31
Respondents		% within Barangay	13%	3%	29%	55%	100%
Total of Type A	and P	Count	9	7	17	30	63
Total of Type A and B Respondents		% within Barangay	14%	11%	27%	48%	100%

River Use

To determine the stakeholders' dependency on rivers found in the project area, several questions were included in the survey of **198** stakeholders¹. Specifically they were asked the following questions:

- If they wash their clothes in the river;
- If they have laundry business utilizing the river;
- If they bathe in the river; and
- If they engage in fishing in the river

Presented in **Tables 2.4.2-8** to **2.4.2-11** are the results of the survey pertaining to river use. As shown in Table 2.2-1, only **22 out of 198**, or **11%** are using the river for washing clothes.

Table 2.4.2-8 Use of River for Washing Clothes (1 of 2)

City/Munici	pality/Barangay/R	Yes	No	Total	
Type A Resp	ondents – Reside	ential Sector			
Silang, Cavite	Sabutan		6	8	14
	Kaong		0	2	2
	Tibig		6	5	11
Binan, Laguna	Timbao		0	5	5
		Count	12	20	32
Residential Se	Respondents – ector	% for Type A Respondents	38%	63%	100%
Type B Resp	ondents – Agricu	ıltural Farmland	Sector		
Silang,	Sabutan		1	5	6
Cavite	Kaong		0	2	2
	Tibig		0	7	7
	Carmen		1	15	16
Total Type B Respondents – Agricultural Farmland Sector		Count	2	29	31
		% for Type B Respondents	6%	94%	100%

Interviewed stakeholders consist of: (i) 32 Type A respondents (residential structure owners); (ii) 31 Type B respondents (PAPs at farm lands); and (iii) 135 Type C respondents (indirectly affected respondents from residential, business, youth, transportation, senior, NGO/POs sectors)

Table 2.4.2-8 Use of River for Washing Clothes (2 of 2)

City/Munici	ipality/Barangay/R	Yes	No	Total	
Type C Resp	ondents - Secon	dary Impact Are	eas		
Type of	Residential Sect	tor	0	35	35
Respondent	Business Sector	•	4	25	29
	Youth Sector		1	18	19
	Transportation S	Sector	1	20	21
	Aged Sector		2	19	21
	NGO/PO/ Home Association/Agri Cooperative		0	10	10
		Count	8	127	135
	Total Type C Respondents - Secondary Impact Areas		6%	94%	100%
Grand Total of		Count	22	176	198
Type A, B & 0	Type A, B & C		11%	89%	100%

It can be discerned from **Table 2.4.2-9** that in terms of use of the river for laundry business, only **10 out of 198**, or **10%** are using the river for their laundry business.

Table 2.4.2-9 Use of River for Laundry Business (1 of 2)

CityMunicipality/Barangay/Respondents			Yes	No	Total
Type A Resp					
Silang, Cavite	Sabutan		4	10	14
	Kaong		0	2	2
	Tibig		4	7	11
Binan, Laguna	Timbao		0	5	5
		Count	8	24	32
Total Type A	tal Type A % within Barangay		25%	75%	100%
Type B Resp	ondents - Agricultural F	armland Secto	r		
Silang,	Sabutan		1	5	6
Cavite	Kaong		0	2	2
	Tibig		0	7	7
Carmen			0	16	16
Total Type B Respondents - Agricultural Farmland Sector Count % within Barangay			1	30	31
			3%	97%	100%

Table 2.4.2-9 Use of River for Laundry Business (2 of 2)

CityMunicipality/Barangay/Respondents			Yes	No	Total
Type C Resp	ondents - Secondary Im	pact Areas			
Type of	Residential Sector		0	35	35
Respondent	Business Sector		1	28	29
	Youth Sector		0	19	19
	Transportation Sector		0	21	21
	Aged Sector		0	21	21
	NGO/PO/Homeowners Association/Agricultural (Cooperative	0	10	10
		Count	1	134	135
	Total Type C Respondents - % within Secondary Impact Areas Type of Respondent		1%	99%	100%
Grand Total of Type A, B and C		Count	10	188	198
Grand Total	or Type A, B and C	% to Total	5%	95%	100%

When asked if they bathe in the river, 28 out of 198, or 14% said "Yes". It is interesting to note that majority of these are those from Type A (Residential Sector) respondents, particularly from Brgy. Sabutan (Please refer to Table 2.4.2-10).

Table 2.4.2-10 Use of River for Bathing (1 of 2)

CityMunicip	CityMunicipality/Barangay/Respondents				Total
Type A Respoi	ndents - Resider	tial Sector			
Silang, Cavite	Sabutan		9	5	14
	Kaong		0	2	2
	Tibig		4	7	11
Binan, Laguna	Timbao		0	5	5
		Count	13	19	32
Total Type A		% within Barangay	41%	59%	100%
Type B Respoi	ndents - Agricult	ural Farmland S	ector		
Silang, Cavite	Sabutan		1	5	6
	Kaong		0	2	2
	Tibig		2	5	7
Carmen			6	10	16
		Count	9	22	31
Total Type B Respondents - Agricultural Farmland Sector % within Barangay			29%	71%	100%

Table 2.4.2-10 Use of River for Bathing (2 of 2)

CityMunicip	oality/Barangay/R	espondents	Yes	No	Total
Type C Respon	ndents - Second	ary Impact Areas			
Type of	Residential Sec	tor	0	35	35
Respondent	Business Secto	r	3	26	29
	Youth Sector		0	19	19
	Transportation S	Sector	2	19	21
	Aged Sector		1	20	21
	NGO/PO/Home Association/Agr Cooperative		0	10	10
		Count	6	129	135
	Total Type C Respondents - Secondary Impact Areas		4%	96%	100%
Grand Total of Type A, B and		Count	28	170	198
С		% to Total	14%	86%	100%

Table 2.4.2-11 shows that among all the respondents, the directly impacted show higher percentage of people fishing on the river with **28%** (9 out of 32) and **26%** (8 out of 31) for **Type A** and **Type B**, respectively, compared to only **4%** (6 out of 129) of those who are indirectly affected, **Type C**.

Table 2.4.2-11 Use of River for Fishing (1 of 2)

			<u> </u>		
City/Municip	Yes	No	Total		
Type A Responder	nts - Residential S	ector			
Silang, Cavite	Sabutan		5	9	14
	Kaong		0	2	2
	Tibig		4	7	11
Binan, Laguna	Timbao		0	5	5
		Count	9	23	32
Total Type A Response	otal Type A Respondents - desidential Sector % within Barangay		28%	72%	100%
Type B Responder	nts - Agricultural F	armland Sector			
Barangay	Sabutan		1	5	6
	Kaong		0	2	2
	Tibig		2	5	7
Carmen			5	11	16
Total Type B Respondents - Agricultural Farmland Sector Count % within Barangay		8	23	31	
		26%	74%	100%	

Table 2.4.2-11 Use of River for Fishing (2 of 2)

City/Municip	ality/Barangay/Res	Yes	No	Total	
Type C Responder	nts - Secondary In	npact Areas			
Type of	Residential Sector	or	2	33	35
Respondent	Business Sector		1	28	29
	Youth Sector		0	19	19
	Transportation Se	ector	2	19	21
	Aged Sector		0	21	21
	NGO/PO/Homeo Association/Agric Cooperative		1	9	10
		Count	6	129	135
Total Type C Respondents - Secondary Impact Areas		% within Type of Respondent	4%	96%	100%
Grand Total of Type A, B and C		Count	23	175	198
		%	12%	88%	100%

<u>Health</u>

Health personnel visit all the barangays, but for more modern health facilities the nearest hospitals are located in poblacions. There are five (5) hospitals in the Municipality of Silang, one (1) of which is a private hospital located in Brgy. Sabutan (Please refer to Table 2.4.2-12). There are three (3) hospitals in Biñan and also three (3) major hospitals in Sta. Rosa. Based on the survey interview the nearest health facility in the barangay is the health center (87%).

Table 2.4.2-12 Nearest Health Facilities in the Community

City/M	lunicipality/E	Health Center	Private Clinic	Public Hospital	Private Hospital	Total		
Type A - Residential/Household Structure								
Silang,	Sabutan	Count	14	0	0	0	14	
Cavite		% within Barangay	100%	0%	0%	0%	100%	
	Kaong	Count	2	0	0	0	2	
		% within Barangay	100%	0%	0%	0%	100%	
	Tibig	Count	11	0	0	0	11	
		% within Barangay	100%	0%	0%	0%	100%	
Biñan,	Timbao	Count	0	3	2	0	5	
Laguna		% within Barangay	0%	60%	40%	0%	100%	
T-4-1-4 T	a A	Count	27	3	2	0	32	
Total of Ty Responde		% within Barangay	84%	9%	6%	0%	100%	
Type B -	Farm Land	s						
Silang,	Sabutan	Count	4	1	0	1	6	
Cavite		% within Barangay	67%	17%	0%	17%	100%	
	Kaong	Count	2	0	0	0	2	
		% within Barangay	100%	0%	0%	0%	100%	
	Tibig	Count	7	0	0	0	7	
		% within Barangay	100%	0%	0%	0%	100%	
	Carmen	Count	15	0	1	0	16	
		% within Barangay	94%	0%	6%	0%	100%	
Total of Ty	vne R	Count	28	1	1	1	31	
Responde		% within Barangay	90%	3%	3%	3%	100%	
Total of T	уре А	Count	55	4	3	1	63	
and B Responde		% within Barangay	87%	6%	5%	2%	100%	

Transportation

The means of transportation going to the above mentioned health facilities are by means of tricycle (70%), pedicab (5%), jeepney (10%); others are by walking (16%); i.e., those who are near the health center of the barangay. Refer to Table 2.4.2-13

Table 2.4.2-13 Means of Transportation Going to Health Facilities

Munici	Walking	Pedicab	Tricycle	Jeepney	Total			
Type A - Residential/Household Structure								
Silang, Cavite	Sabutan	Count	0	1	13	0	14	
		% within Barangay	0%	7%	93%	0%	100%	
	Kaong	Count	0	0	2	0	2	
		% within Barangay	0%	0%	100%	0%	100%	
	Tibig	Count	6	0	5	0	11	
		% within Barangay	55%	0%	45%	0%	100%	
Biñan, Laguna	Timbao	Count	0	0	0	5	5	
		% within Barangay	0%	0%	0%	100%	100%	
Total of Type A		Count	6	1	20	5	32	
Respondents		% within Barangay	19%	3%	63%	16%	100%	
Type B - Farm	Lands							
Silang, Cavite	Sabutan	Count	0	1	5	0	6	
		% within Barangay	0%	17%	83%	0%	100%	
	Kaong	Count	0	0	2	0	2	
		% within Barangay	0%	0%	100%	0%	100%	
	Tibig	Count	1	0	5	1	7	
		% within Barangay	14%	0%	71%	14%	100%	
	Carmen	Count	3	1	12	0	16	
		% within Barangay	19%	6%	75%	0%	100%	
Total of Type B		Count	4	2	24	1	31	
Respondents		% within Barangay	13%	6%	77%	3%	100%	
Total of Type A	and B	Count	10	3	44	6	63	
Respondents	and D	% within Barangay	16%	5%	70%	10%	100%	

Education

With regards to educational facilities, elementary schools are available in every barangay. In terms of secondary education, the barangays with educational facilities offering secondary education Sabutan National High School, Kaong National High School, Munting Ilog National High School. There are seven (7) tertiary schools in the Municipality of Silang. Of them there are two (2) public schools namely Cavite State University and Philippine National Police Academy located in Silang Proper. In the city of Biñan and Sta. Rosa primary educational facilities are also available in every barangay, while secondary education facilities are located in the poblacions of each city. There are eight (8) tertiary educational facilities in Biñan. Polytechnic University of the Philippines is the available tertiary educational facility in Sta. Rosa that is managed by the government. **Table** 2.4.2-14 shows the nearest available facilities in the community of the interviewed PAPs.

Table 2.4.2-14a Nearest Available Educational Facilities in the Community (1 of 2)

Munici	oality/Barang	ay	Elementary	High School	Total			
Type A - Residen	Type A - Residential/Household Structure							
Silang, Cavite	Sabutan	Count	14	0	14			
		% within Barangay	100%	0%	100%			
	Kaong	Count	2	0	2			
		% within Barangay	100%	0%	100%			
	Tibig	Count	11	0	11			
		% within Barangay	100%	0%	100%			
Biñan, Laguna	Timbao	Count	5	0	5			
		% within Barangay	100%	0%	100%			
		Count	32	0	32			
Total of Type A Re	spondents	% within Barangay	100%	0%	100%			

Table 2.4.2-14a Nearest Available Educational Facilities in the Community (2 of 2)

Municip	ality/Barang	ay	Elementary	High School	Total
Type B - Farm La	nds				
Silang, Cavite	Sabutan	Count	5	1	6
		% within Barangay	83%	17%	100%
	Kaong	Count	2	0	2
		% within Barangay	100%	0%	100%
	Tibig	Count	7	0	7
		% within Barangay	100%	0%	100%
	Carmen	Count	16	0	16
		% within Barangay	100%	0%	100%
		Count	30	1	31
Total of Type B Respondents		% within Barangay	97%	3%	100%
Total of Type A an	nd B	Count	62	1	63
Respondents	Total of Type A and B Respondents		98%	2%	100%

Table 2.4.2-14b shows the means of transportation going to the nearest educational facilities in the abovementioned table. Result showed that (83%) of them are riding tricycle which is the common means of transportation in each barangay. Around 17% live near schools and just walk.

Table 2.4.2-14b Means of Transportation Going to Educational Facilities

City/M	unicipality/Bara	angay	Walking	Tricycle	Total
Type A - Resider	ntial/Househo	ld Structure			
Silang, Cavite	Sabutan	Count	0	14	14
		% within Barangay	0%	100%	100%
	Kaong	Count	5	6	11
		% within Barangay	45%	55%	100%
	Tibig	Count	0	2	2
		% within Barangay	0%	100%	100%
Biñan, Laguna	Timbao	Count	0	5	5
		% within Barangay	0%	100%	100%
		Count	5	27	32
Total of Type A R	espondents	% within Barangay	16%	84%	100%
Type B - Farm L	ands				
Silang, Cavite	Sabutan	Count	1	5	6
		% within Barangay	17%	83%	100%
	Kaong	Count	0	2	2
		% within Barangay	0%	100%	100%
	Tibig	Count	1	6	7
		% within Barangay	14%	86%	100%
	Carmen	Count	4	12	16
		% within Barangay	25%	75%	100%
			6	25	31
Total of Type B R	Total of Type B Respondents		19%	81%	100%
Total of Type A and B Respondents		Count	11	52	63
		% within Barangay	17%	83%	100%

Sanitation

All of the respondents have toilet facilities, 97% have toilet facilities installed inside their house while the remaining 3% are outside their house. Table 2.4.2-15a shows the type of toilet facilities that the respondents have. Majority of them have semi-flush (95%) toilet and only three (3) has a flush type toilet facility living in Brgy. Sabutan, Silang, Cavite and Brgy. Timbao, Biñan, Laguna. Location of the Respondents toilet facility is presented in **Table 2.4.2-15b**.

Table 2.4.2-15a Type of Toilet Facilities of PAPs Interviewed

City/Municipality/Barangay			Semi-Flush	Flush	Total			
Type A - Residential/Household Structure								
Silang, Cavite	Sabutan	Count	14	0	14			
		% within Barangay	100%	0%	100%			
	Kaong	Count	2	0	2			
		% within Barangay	100%	0%	100%			
	Tibig	Count	11	0	11			
		% within Barangay	100%	0%	100%			
Biñan, Laguna	Timbao	Count	3	2	5			
		% within Barangay	60%	40%	100%			
Total of Type A		Count	30	2	32			
Respondents		% within Barangay	94%	6%	100%			
Type B - Farm L	ands							
Silang, Cavite	Sabutan	Count	5	1	6			
		% within Barangay	83%	17%	100%			
	Kaong	Count	2	0	2			
		% within Barangay	100%	0%	100%			
	Tibig	Count	7	0	7			
		% within Barangay	100%	0%	100%			
	Carmen	Count	16	0	16			
		% within Barangay	100%	0%	100%			
Total of Type B		Count	30	1	31			
Respondents		% within Barangay	97%	3%	100%			
Total of Type A a	and B	Count	60	3	63			
Respondents		% within Barangay	95%	5%	100%			

Table 2.4.2-15b Location of Toilet Facilities of PAPs Interviewed

City/Munici	ipality/Baran	gay	Inside the house	Outside the house	Total
Type A - Residential	/Household	Structure			
Silang, Cavite	Sabutan	Count	13	1	14
		% within Barangay	93%	7%	100%
	Kaong	Count	2	1	2
		% within Barangay	100%	0%	100%
	Tibig	Count	11	0	11
		% within Barangay	100%	0%	100%
Biñan, Laguna	Timbao	Count	5	0	5
		% within Barangay	100%	0%	100%
		Count	31	1	32
Total of Type A Response	ondents	% within Barangay	97%	3%	100%
Type B – Farm Land	s				
Silang, Cavite	Sabutan	Count	6	0	6
		% within Barangay	100%	0%	100%
	Kaong	Count	2	0	2
		% within Barangay	100%	0%	100%
	Tibig	Count	6	1	7
		% within Barangay	86%	14%	100%
	Carmen	Count	16	0	16
		% within Barangay	100%	0%	100%
			31	1	31
Total of Type B Response	ondents	% within Barangay	97%	3%	100%
Total of Type A and	В	Count	61	2	63
Respondents		% within Barangay	97%	3%	100%

Solid Waste Management

Collection of garbage in barangays is very limited; only (11%) and mostly those who are near the poblacions area such as Brgy. Sabutan are serviced. The projectaffected barangays generally bury (14%) or burn (71%) their waste in their backyard while 3% of them throw their trash in the nearby river. Please see Table **2.4.2-16**.

Table 2.4.2-16 Solid Disposal (1 of 2)

City/Mun	icipality/Bar	angay	River	Open pit	Garbage Collector	Burn	Total
Type A - Reside	ential/Hous	ehold Structu	re				
Silang, Cavite	Sabutan	Count	0	1	1	12	14
		% within Barangay	0%	7%	7%	86%	100%
	Kaong	Count	0	0	0	2	2
		% within Barangay	0%	0%	0%	100%	100%
	Tibig	Count	0	1	1	9	11
		% within Barangay	0%	9%	9%	82%	100%
Biñan, Laguna	Timbao	Count	0	0	3	2	5
		% within Barangay	0%	0%	60%	40%	100%
Total of Type A		Count	0	2	5	25	32
Respondents		% within Barangay	0%	6%	16%	78%	100%
Type B – Farm	Lands						
Silang, Cavite	Sabutan	Count	0	0	2	4	6
		% within Barangay	0%	0%	33%	67%	100%
	Kaong	Count	0	1	0	1	2
		% within Barangay	0%	50%	0%	50%	100%
	Tibig		1	5	0	1	7
		% within Barangay	14%	71%	0%	14%	100%

Table 2.4.2-16 Solid Disposal (2 of 2)

City/Municipality/Barangay			River	Open pit	Garbage Collector	Burn	Total		
Type B – Farm	Type B – Farm Lands								
	Carmen	Count	1	1	0	14	16		
			6%	6%	0%	88%	100%		
Total of Type B		Count	2	7	2	20	31		
Respondents		% within Barangay	6%	23%	6%	65%	100%		
Total of Type A and B		Count	2	9	7	45	63		
Respondents	aliu b	% within Barangay	3%	14%	11%	71%	100%		

Transportation

The common means of public utility transportation in the project area is tricycle. Barangays along the provincial roads are accessible by *jeepneys*. **Table 2.4.2-17** shows the various types of public transportation in the area.

Table 2.4.2-17 Mode of Transportation in the Area (1 of 2)

City/Munici	pality/Baran	gay	Jeepney	Tricycle	Total				
Type A - Residentia	Type A - Residential/Household Structure								
Silang, Cavite	Sabutan	Count	1	13	14				
		% within Barangay	7%	93%	100%				
	Kaong	Count	0	2	2				
		% within Barangay	0%	100%	100%				
	Tibig	Count	1	10	11				
		% within Barangay	9%	91%	100%				
Biñan, Laguna	Timbao	Count	5	0	5				
		% within Barangay	100%	0%	100%				
				25	32				
Total of Type A Resp	oondents	% within Barangay	22%	78%	100%				

Mode of Transportation in the Area (2 of 2) Table 2.4.2-17

City/Munici	pality/Baran	gay	Jeepney	Tricycle	Total			
Type B – Farm Land	Type B – Farm Lands							
Silang, Cavite	Sabutan	Count	0	6	6			
		% within Barangay	0%	100%	100%			
	Kaong	Count	0	2	2			
		% within Barangay	0%	100%	100%			
	Tibig	Count	3	4	7			
		% within Barangay	43%	57%	100%			
	Carmen	Count	5	11	16			
		% within Barangay	31%	69%	100%			
		Count	8	23	31			
Total of Type B Respondents		% within Barangay	26%	74%	100%			
Total of Type A and B Respondents		Count	15	48	63			
		% within Barangay	24%	76%	100%			

2.4.3 Project Awareness

There are a total of **199** respondents who were asked on project awareness regarding the proposed Cavite – Laguna Expressway Project (Laguna Section). These consist of:

- (i) 32 Type A respondents (residential structure owners);
- (ii) 31 Type B respondents (PAPs at farm lands);
- (iii) 135 Type C respondents or the indirectly affected respondents from residential, business, youth, transportation, senior, NGO/POs sectors

The respondents' awareness of the proposed project is presented in **Table 2.4.3-1**, which shows that majority (56%) of the respondents are well informed of the project. **Table 2.4.3-2** on the other hand shows their respective sources of information about the Project.

As seen from these tables, the main sources of information were from the LGUs (26%) and Surveyors (21%). According to the Respondents who attended in the IEC, the project has been presented to them since 2004. The surveyors also informed them during their staking of the alignment. Other sources of information include Consultants (JICA-ECOSYSCORP, INC.), neighbors and friends, and relatives who attended the PCMs, and relayed the information to them.

Table 2.4.3-1 Knowledge About CALA Expressway Project (1 of 2)

City/Municipa	ality/Barangay/Resp	Yes	No	Total	
Type A - Resider	ntial/Household St	ructure			
Silang, Cavite	Sabutan	Count	13	1	14
		% within Barangay	93%	7%	100%
	Kaong	Count	2	0	2
		% within Barangay	100%	0%	100%
	Tibig	Count	9	2	11
		% within Barangay	82%	18%	100%
Biñan, Laguna	Timbao	Count	2	3	5
		% within Barangay	40%	60%	100%
Total Type A Respondents		Count	26	6	32
		% within Barangay	81%	19%	100%

Table 2.4.3-1 Knowledge About CALA Expressway Project (2 of 2)

City/Municipa	ılity/Barangay/Resp	ondents	Yes	No	Total
Type B – Farm La	ınds				
Silang, Cavite	Sabutan	Count	6	0	6
		% within Barangay	100%	0%	100%
	Kaong	Count	1	1	2
1		% within Barangay	50%	50%	100%
	Tibig	Count	6	1	7
		% within Barangay	86%	14%	100%
	Carmen	Count	9	7	16
		% within Barangay	56%	44%	100%
	22	9	31		
Total Type B Resp	ondents	% within Barangay	71%	29%	100%
Type C – Indirect	ly Affected				
Type of	Residential Sector	or	24	11	35
Respondent	Business Sector		14	15	29
	Youth Sector		3	16	19
	Transportation Se	ector	9	12	21
	Aged Sector		8	13	21
	NGO/PO/Homeo Association/Agric Cooperative		5	5	10
		Count	63	72	135
Total Type C Respondents		% within Type of Respondent	47%	53%	100%
Total of Type A. B. and C.		Count	112	87	199
Respondents	Total of Type A, B, and C Respondents		56%	44%	100%

Table 2.4.3-2 Source of Information (1 of 2)

City/Municip	oality/Barangay/F	Respondents	LGU's	JICA/ ECOSYS	Relatives	Neighbors/ Friends	Surveyo r	Total
Type A - Resid	lential/Househo	old Structure						
Silang, Cavite	Sabutan	Count	3	3	1	2	4	13
		% within Barangay	23%	23%	8%	15%	31%	100%
	Kaong	Count	2	0	0	0	0	2
		% within Barangay	100%	0%	0%	0%	0%	100%
	Tibig	Count	4	2	0	0	3	9
		% within Barangay	44%	22%	0%	0%	33%	100%
Biñan, Laguna Timb	Timbao	Count	0	2	0	0	0	2
		% within Barangay	0%	100%	0%	0%	0%	100%
Count			9	7	1	2	7	26
Total Type A Re	espondents	% within Barangay	35%	27%	4%	8%	27%	100%
Type B - Farm	Lands							
Silang, Cavite	Sabutan	Count	2	2			2	6
		% within Barangay	33%	33%	0%	0%	33%	100%
	Kaong	Count	0	0			1	1
		% within Barangay	0%	0%	0%	0%	100%	100%
	Tibig	Count	0	4			2	6
		% within Barangay	0%	67%	0%	0%	33%	100%
	Carmen	Count	3	3			3	9
		% within Barangay	33%	33%	0%	0%	33%	100%
		Count	5	9	0	0	8	22
Total Type B Re	espondents	% within Barangay	23%	41%	0%	0%	36%	100%

Table 2.4.3-2 Source of Information (2 of 2)

City/Municipality/Barangay/Respondents			LGU's	JICA/ ECOSYS	Relatives	Neighbors/ Friends	Surveyor	Total
Type C - Indi	rectly Affected							
Type of	Residential Se	ector	7	1	7	5	4	24
Respondent	Business Sect	or	2	2	4	4	2	14
	Youth Sector		1	0	1	1	0	3
	Transportation	Sector	2	0	3	3	1	9
	Aged Sector		2	2	3	1	0	8
	NGO/PO/Hom Association/Ag Cooperative		1	0	2	1	1	5
		Count	15	5	20	15	8	63
Total Type C Respondents % within Type of Respondent		24%	8%	32%	24%	13%	100 %	
Total of Type	Total of Type A, B, and C			22	21	17	23	112
Respondents		% to Total	26%	20%	19%	15%	21%	100 %

2.4.4 Social Acceptability

Out of 199 respondents who were asked on their social acceptability on the proposed Cavite -Laguna Expressway Project (Laguna Section), majority (74%) are in favor of the Project. Their common reasons are:

- For improvement of accessibility and for the future development of their province;
- Others said that since that this is a government project, they have no other choice but to accept it;

The remaining 26% not in favor of the project worries too much on the loss of their land.

As seen in Table 2.4.4-1, the highest percentage of respondents who refuses the project are those losing their dwelling structures (Type A).

Table 2.4.4-1 Social Acceptability of the Respondents (1 of 2)

City/Municipa	lity/Barangay/Resp	Yes	No	Total	
Type A - Resident	ial/Household Str	ucture			
Silang, Cavite	Sabutan	Count	3	11	14
		% within Barangay	21%	79%	100%
	Kaong	Count	1	1	2
		% within Barangay	50%	50%	100%
	Tibig	Count	1	10	11
		% within Barangay	9%	91%	100%
Binan, Laguna	Timbao	Count	5	0	5
		% within Barangay	100%	0%	100%
		Count	10	22	32
Total Type A		% within Barangay	31%	69%	100%
Type B – Farm Lai	nds				
Silang, Cavite	Sabutan	Count	5	1	6
		% within Barangay	83%	17%	100%
	Kaong	Count	1	1	2
		% within Barangay	50%	50%	100%
	Tibig	Count	4	3	7
		% within Barangay	57%	43%	100%
	Carmen	Count	8	8	16
		% within Barangay	50%	50%	100%
		Count	18	13	31
Total Type B		% within Barangay	58%	42%	100%

Table 2.4.4-1 Social Acceptability of the Respondents (2 of 2)

City/Municipality/Barangay/Respondents			Yes	No	Total
Type C – Indirectly Affected					
Type of Respondent	Residential Sector		31	4	35
	Business Sector		27	2	29
	Youth Sector		12	7	19
	Transportation Sector		20	1	21
	Aged Sector		18	3	21
	NGO/PO/ Homeowners Association/Agricultural Cooperative		10	0	10
Total Type C		Count	118	17	135
		% within Type of Respondent	87%	13%	100%
Total of Type A, B, and C Respondents		Count	147	52	199
		% to Total	74%	26%	100%

2.4.5 Informal Settlers

There are no identified informal settlers to be affected by the CALAX Project.

2.4.6 Farmlands and Livelihood to be Affected

As mentioned in this report, the western section of this project is mostly agricultural land which is located in the municipality of Silang. The loss of livelihood to be mostly affected is farming. Details on **livelihood** to be affected and the corresponding eligibilities and entitlements are presented in the **Resettlement Action Plan (RAP).**

Chapter 3 Environmental/Ecological Risk Assessment

3 ENVIRONMENTAL/ECOLOGICAL RISK ASSESSMENT

There are <u>no expected sources of chronic and acute risks/worst case scenarios</u>. As such it is deemed not necessary to provide an environmental/ecological risk assessment for this Project.

Chapter 4 Impacts Management Plan

IMPACTS MANAGEMENT PLAN 4

4.1 **ENVIRONMENTAL IMPACTS, MITIGATION AND ENHANCEMENT MEASURES**

Table 4.1-1 presents the potential impacts of the proposed CALA Expressway Project (Laguna Section) that may affect the receiving environment during its implementation. Also discussed in the Tables are the recommended mitigation (if negative) and enhancement (if positive) measures for each identified impact. The duration and types of impacts are likewise included.

A separate discussion on the potential impacts of the project to the geological aspect of the environment, particularly seismicity is presented in the succeeding sections. The recommended mitigation measures that correspond to the identified impacts are also described.

Impacts of Seismicity and Mitigation Measures

It is recognized that seismic shaking will have effect on the structures of the project road such as but not limited to the bridges and interchanges. However, the design parameters to be adopted for these structures cannot be provided for the time being since the Detailed Engineering Design (DED) for the project remains to be completed.

Seismic design is site specific, thus the following measures are presented:

1) Section 208.4.4 of the Structural Code of the Philippines states that "The seismic hazard characteristics for the site shall be established based on the seismic zone and proximity of the site to active seismic sources, site soil profile characteristics and structure importance factor".

This requirement can be done specifically for the site through the following:

- Analysis of aerial photographs/radar images of the site to establish the possible location of the fault trace on the ground;
- Geo-resistivity survey to determine the exact location, trend, and zone width of the fault trace/s; and
- Trenching essentially:
 - a) For detailed study/mapping of the fault to establish the onsite lateral/vertical movement;
 - b) Determine the primary and secondary rupturing; and
 - c) Datable samples, if available can be collected for dating to determine the age of movement
- 2) For the bridge and fly over component of the project, a site specific Probabilistic Seismic Hazard Assessment (PSHA) can be undertaken. In PSHA seismic hazard is defined as the annual probability of a specified size of earthquake being exceeded at a specified location. The inverse of the annual probability of exceedance is the return period (recurrence interval).

The objectives of the PSHA analysis are to:

- a) Estimate the Maximum Considered Earthquake (MCE) defined as the largest earthquake that appears possible along presently recognized faults having 2% probability of not being exceeded in 50 years corresponding to typical return period of approximately 2,500 years at the site. While stronger shaking than this could occur, it was judged that it would be economically impractical to design for such very rare ground motions and the selection of the 2% in 50 years likelihood as the maximum considered earthquake ground motion would result in acceptable levels of seismic safety; and
- b) Estimate the Design Basis Earthquake (DBE) usually defined in practice as the earthquake with a ground motion that has 10% probability of being exceeded at least once over a period of 50 years and a corresponding statistical return period of 475 years.

Recommended Mitigating Measures to Prevent Failures of Bridges and Flyovers during Earthquake

The project can be divided into **two** (2) components namely the road and the bridge/flyover component. These components in general will behave differently during an earthquake each will require distinct design features.

Mitigation measures are based on structures has to withstand large horizontal and vertical accelerations and dynamic forces during earthquakes. This creates special requirements on the stiffness and load-bearing capacity of the structural members as well as on their connections.

The main concern will be to keep the roadway open and standing after an earthquake and prevent collapse that can shut down the roadways in time of emergencies.

The design of bridge/flyover is "site specific" or based on the maximum credible earth movement expected at that location determined by PSHA. The calculation depends on many factors, including the nearest active earthquake fault, type of geology beneath the bridge and the original bridge design

Design Features for Bridges and Flyovers

Recent development on earthquake engineering led to a number of design features to help structures withstand ground shaking which can be applied to structures of the project which includes but not limited to the following:

• Single-column bridges and flyovers are known to be most vulnerable to earthquake damage. This design features now uses steel jackets to increase the strength of columns. Other practices in strengthening the columns are by encircling the columns with a steel casing to prevent the bridge column from crumbling apart during an earthquake. Aside from steel, advanced woven fiber casing / composite materials are used due to their light weight, high stiffness-to-weight and strength-to-weight ratios, and potentially high resistance to environmental degradation, resulting in lower life-cycle costs;

- In addition to the column casing, bridge footings can be made bigger and given more support by placing additional pilings in the ground or by using steel tie-down rods to better anchor the footings to the ground;
- Bridge abutments can be made larger and the restrainer units are made stronger since encasing the columns make them stiffer and can change the way forces are transmitted within the bridge;
- Uses of "hinge seat extensions" which enlarge the size of the hinges that connect sections of bridge decks and helps prevent them from separating during severe ground movement; and
- Design which will provide flexibility to the structure rather than rigidity

These design features are summarized in the succeeding illustrations.

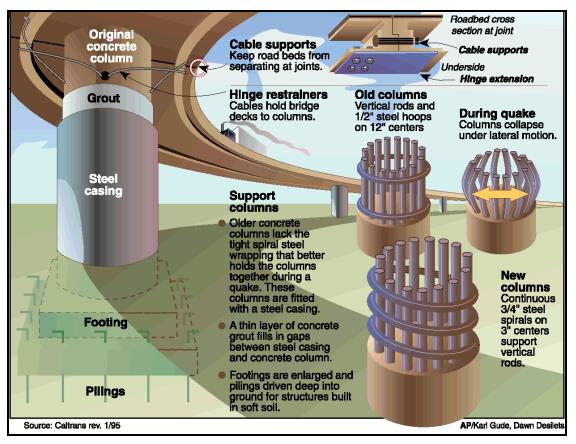
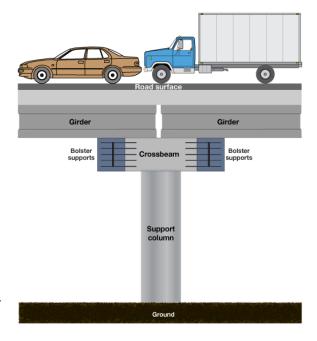
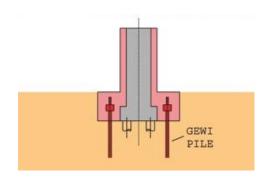



Illustration summarizing engineering design features to strengthen bridges and flyovers to withstand failures during earthquake (from California Civil Engineering Review website)

ECOSYSCORP, INC.

Other design innovations that can be adopted are the following:


- Widening of cross beams, installation of girder supports, steel column jackets, and walls to reinforce bridges to improve the integrity and performance of the bridges in the event of an earthquake;
- Bolsters to extend the crossbeam below the girders thus prevent the girder from slipping sideways during an earthquake. support the road surface making it important they remain in place during an earthquake (from Washington State Department of Transport); and
- Filling the gaps between columns with a support wall. The support wall will better hold the bridge in place during a severe earthquake (from Washington State Department Transport).
- Use of girder stops to prevent girders from sliding or tipping over during an earthquake;
- Firming up of beams, increasing the width of the pillars that bridges sit on and reinforcing the pillars;
- Reinforcing the concrete encasement of the pier stem columns and pile caps;
- Reinforcing the brackets at the abutment;

- Securing brackets to the beam and the abutment and then running a cable between them to restrict the beams from dislodging in a seismic event. (Drillco website);
- Widening of column thickness and footing width in addition to installation of additional / bigger piles to enhance load-bearing capacity and to prevent damage to foundations during seismic events.
- Increasing the stability of the structure using post-tensioning tendons to avoid the loss of support for the bearings due to large relative displacements between the superstructure and the substructure. So as not impede free movement of the structure due to temperature variation or other effects the pier cap beams are widened and strengthened and the superstructure is restrained to the support.
- Widening or adding of skirt spread footings and or extending downward further into bedrock.

Design Features for the Road Component

The best approach to mitigate ground rupture is avoidance. However, in the case of the project, this measure cannot be applied since a section of the road alignment will cross the trace of the West Marikina Fault Zone.

The key here is to always remember the West Valley Fault is a zone and not a line where rupture can occur in case of fault movement. The success of the mitigation measure will depend on identifying all likely rupture zones, and on characterization of the fault movement / displacement.

In designing the mitigation measure, it will be safe to assume that damage to the road section cannot be avoided, thus the key in the design will be the ease of rendering the road section operational with minimum use of materials, equipment and man-power. At best, the partial road repair can be undertaken even by the Barangay to immediately reopen the road immediately though damaged after the earthquake.

More realistic criteria can be established on a project/site-specific basis (e.g. Bray et al. 1993a). Once detailed studies of the geology and local site conditions (soil and topography) are completed, a combination of the methods described below may be employed to reduce damage resulting from surface rupturing.

- Use the inherent capability of unconsolidated geomaterials to "locally absorb" and distribute distinct bedrock fault movements. This can be done by detailed geotechnical investigation. It should be noted that differential movement across distinct bedrock faults dissipates as the shear rupture plane rises through overlying fills, especially if the fills are reinforced (*Bray et al 1993a*);
- The road component crossing the fault zone can be engineered to undergo ground deformation without significant structural damage. This is now in use in design of structures subjected to ground deformation resulting from mining subsidence and is applicable (e.g. Kratzsch 1983). The main consideration here is increasing ductility;
- The area within the known fault zone can be trenched and backfilled with loose materials to reduce lateral earth pressure. Road pavement laid on

top of the backfill within the trench of the known fracture zone can be designed as reinforce slab isolated from road section resting outside the fracture zone. Reinforced slabs can perform better than unreinforced slabs and can minimize damage due to ground movements from seismic compaction. In addition, it would be preferable if the slabs are underlain by polyethylene (plastic) sheets overlaying the granular soil-bedding laver to limit the ground strain that can be transmitted to the reinforced road pavement slab (J.D. Bray 2001); and

The design measures can include establishing non-arbitrary setbacks based on fault geometry, fault displacement, and the overlying soil; constructing earth fills, reinforced with geosynthetics, to partially absorb and spread out the underlying ground movements; using slip layers to decouple ground movements from the road slab element.

. a.z.o	Table 4.1-1 Impacts Management Plan (1/17)				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures		
PRE-CONSTRUCTION	AND CONSTRUCTION PHASES				
THE LAND					
Land Use Classification	A total of about 92.56 ha of non-irrigated agricultural lands (approximately 34.5 ha of corn fields and 58.06 pineapple plantation) will be traversed by the alignment	Long-term, Negative	Just compensation in accordance with the Land Acquisition Resettlement and Rehabilitation Indigenous People (LARRIPP)/World Bank Operational Procedure (WBOP) 4.12 will be accorded to the property owners for loss of agricultural farmlands;		
	Loss of fertile topsoil		Construction activities will be limited to the required ROW limit of 50-60 m to minimize crop damage and loss of farmlands;		
			Unnecessary earth moving and related activities will be minimized to prevent extensive loss of fertile topsoil; and		
			Un-recycled/unused topsoil will be replaced/delivered to adjacent farmlands		
Geology	Possible occurrence of rain-induced landslide and soil erosion along cut sections and slope areas	Short-term, Negative	Suitable angle of repose along cut areas will be maintained to prevent occurrence of landslides and soil erosion;		
			• Slope and pier protection with retaining structures will be constructed along unstable slopes;		
			• Removal of vegetation and tree cutting will be limited to the required ROW of 50-60 m ; and		
			 Re-vegetation of identified erosion prone areas with suitable grass species (e.g. vetiver) and other common slope protection plant species will be considered 		
	Possible occurrence of earthquake-induced landslides	Long-term, Negative	 Landsides due to earthquake if ever it will occur will be confined on gully walls and possibly at the escarpment at the eastern margin of the volcanic slope; 		
			The alignment will not pass along escarpments; and		
			Bridges crossing gullies will have well-engineered abutments founded into the gully floor or imbedded into the gully walls		

Table 4.1-1 Impacts N	lanagement Plan (2/17)		
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES		
THE LAND			
Geology	Occurrence of ash fall due to Taal Volcano eruption: • Ash can clog drainage;	Short-term, Negative	 Volcanic ash accumulation along the project roadway should be cleared immediately; Vulnerable people must wear face mask or cover their nose &
	 Fine ash is extremely slippery, hampering driving and walking; Volcanic ash is gritty, abrasive and corrosive and can trouble infants, the elderly and those with respiratory ailments.; Ash can abrade and damage machinery and 		 mouth with damp handkerchief or cloth; Public buildings and critical infrastructures are most vulnerable. Identify and organize ash clearing teams to monitor and clear ash accumulation; Closely monitor the bulletin of PHIVOLCS and heed their advice; and
	sensitive electronic/electrical equipment; and • Long-term exposure to wet ash can corrode metal		Issue warning bulletin to road users
	Occurrence of volcanic smog due to Taal Volcano eruption: • Generally associated with eruption clouds/ash fall;	Short-term, Negative	 Closely monitor the bulletin of PHIVOLCS and heed their advice; and Issue warning bulletin to road users
	Can aggravate respiratory problems; and Can form acid rain that can corrode metals and contaminate drinking water if collected or sourced from rainwater catchment systems		
Flooding	Possible aggravation of existing localized flooding at adjacent areas of the alignment, particularly in Sta. Rosa and Biñan Cities	Long-term, Negative	The alignment crosses a number of deep gullies which acts as a discharge points for engineered drainage lines. These gullies are relatively deep and flow towards the receiving bodies of water (e.g. Laguna de Bay etc.); The alignment crosses a number of deep gullies which acts as a discharge points for engineered drainage lines. These gullies are relatively deep and flow towards the receiving bodies of water (e.g. Laguna de Bay etc.);
			 Executive subdivisions and developed areas in Sta. Rosa and Biñan Cities adjacent to the alignment have existing well- engineered drainage systems that can accommodate storm water discharge from the CALA Expressway alignment;

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES		
THE LAND			
Flooding	Possible aggravation of existing localized flooding at adjacent areas of the alignment,	Long-term, Negative	Dumping of garbage along the natural waterways must be prohibited; and
	particularly in Sta. Rosa and Biñan Cities		Engineered drainage lines on both private and public properties/development areas adjacent to the alignment must be regularly de-clogged to ensure unhampered flow of water
Terrestrial Biology (Flora)	Minimal loss of natural secondary forest vegetation at bridge sites	Long-term, Negative	"Permit To Cut" will be secured prior to any tree cutting activities along the alignment;
Forest Vegetation			• Tree cutting will be limited within the required ROW of 50-60 m;
			Balling/relocation of trees will be carefully undertaken;
			 Replacement of cut trees in reforestation area/s designated by the DENR-FMB Region IV-A will be undertaken. Ratio and type of species to be introduced will be determined by the DENR Region IV-A; and
			 Planting of trees along National Roads as per DPWH D.O. 131, Series of 1995 will be strictly implemented
Terrestrial Biology (Flora)	Minimal loss of natural secondary agricultural vegetation covers along the areas traversed by the proposed CALAX alignment	Long-term, Negative	Unavoidable but loss of vegetation is expected to be minimal. In addition, most of the areas crossed by the alignment are open grasslands;
Agricultural Vegetation	ale proposed of the production		 Just compensation in accordance with the LARRIPP/WBOP 4.12 will be accorded to the farmers for loss of agricultural crops such as pineapple, coffee, coconut, banana, and cassava;
Terrestrial Biology (Fauna)	Temporary disturbance to wildlife movements and activities, particularly avifauna (bird)	Short-term, Negative	Temporary but unavoidable. Significant bird activities such as feeding and nesting can be performed at adjacent forest patches and grassland areas;
			Bird poaching will be strictly prohibited; and
			Workers will be educated on wildlife fauna conservation and protection, especially avifauna to discourage possible poaching

Environmental Component Likely to	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
be Affected		·	
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES		
THE WATER			
Surface Hydrology	Possible decrease in water flow rate of the rivers and creeks crossed by the CALA Expressway	Short-term, Negative	 Nets will be provided at bridge construction sites to prevent debris from falling into the waterways and cause water flow impediment;
	alignment due impediment caused by improper management of construction spoils and debris, particularly stripped vegetation		• Temporary rechanneling of stream flow along major waterways such as Malaking Ilog River, Lumbia River, and Malindig River will be considered; and
			 Construction spoils and debris, particularly stripped vegetation will be regularly hauled and disposed to designated dumpsite in Brgy. Lalaan I and Brgy. Tubuan I, Silang, Cavite and designated dumpsites in Biñan Santa Rosa Cities
Groundwater	Possible contamination of groundwater table due to oil seepage and indiscriminate disposal of toxic	ue Long-term, Negative	Motor pool area will be located away from existing groundwater sources to prevent contamination; and
	chemicals (i.e. paints and used oils)		• Storage depots for used oils and other toxic wastes will be provided in the motor pool area to temporarily hold these materials prior to disposal; and
			 Regular disposal of hazardous wastes such as used oils, worn out parts, and related materials will be handled by DENR- accredited company and will be disposed to DENR-approved sites
THE WATER			
Water Quality	coliform content of the waterways crossed by the proposed CALA Expressway alignment, particularly Malaking Ilog River, Lumbia River,	Short-term, Negative	 Temporary sanitation facilities, particularly portable toilets and garbage bins will be provided at all construction sites, temporary field offices, and workers' camp sites to ensure proper solid and domestic wastes management;
	and Malindig River due to improper management of solid and domestic wastes to be generated by		Proper waste segregation will be strictly implemented;
	the construction workers during implementation of the project		 Solid and domestic wastes generated by the workers will be regularly hauled and disposed to designated dumpsite in Brgy. Lalaan I and Brgy. Tubuan I, Silang, Cavite and designated dumpsites in Biñan Santa Rosa Cities;

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures	
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES			
THE WATER				
Water Quality	Possible increase in the present level of total coliform content of the waterways crossed by the proposed CALA Expressway alignment, particularly Malaking Ilog River, Lumbia River, and Malindig River due to improper management of solid and domestic wastes to be generated by the construction workers during implementation of the project	Short-term, Negative	Daily inspection of the workers' camp sites, temporary fiel offices, and all construction areas provided with temporar sanitation facilities will be strictly implemented to ensure proper wastes and sanitation management; and	
			Coliform level monitoring along selected waterways will be conducted twice a year	
	Possible increase in the siltation level of the waterways crossed by the proposed CALA Expressway alignment, particularly Malaking Ilog River, Lumbia River, and Malindig River due to surface run-off	waterways crossed by the proposed CALA Expressway alignment, particularly Malaking Ilog	Short-term, Negative	 Earth moving activities and related construction works particularl along cut and slope areas, and bridge sites will be cautiousl undertaken to minimize soil disturbance that may cause surface run off;
			 Temporary silt traps will be constructed along the waterways to prevent siltation caused by surface run-off, particularly during hig precipitation periods; 	
			 Exposed and open construction areas adjacent to the waterways will be re-vegetated to prevent surface run-off, particularly during high precipitation periods; and 	
			TSS level monitoring along selected waterways will be conducted twice a year	
	Possible increase in pH level of the waterways crossed by the proposed CALA Expressway alignment, particularly Malaking Ilog River, Lumbia River, and Malindig River during bridge construction due to concrete spillage	Short-term, Negative	 Concrete pouring and road surfacing at bridge construction sites will be closely supervised to prevent spillage into the waterways; 	
			 Nets will be installed at bridge construction sites to preven contamination of the waterways in case of accidental concrete spillage during pouring; and 	
			 Washing of transit mixers and related construction equipmer along the waterways will be strictly prohibited to prevent increas in pH level 	

Table 4.1-1 Impacts M	anagement Plan (6/17)		
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	ND CONSTRUCTION PHASES		
THE WATER			
Water Quality	Possible increase in the oil & grease level of the waterways crossed by the proposed CALA Expressway alignment, particularly Malaking Ilog River, Lumbia River, and Malindig River due to oil spillage from heavy equipment and machineries during bridge construction	Short-term, Negative	 Periodic Service Maintenance (PMS) of the construction equipment and machineries will be strictly complied with to ensure that these are in good working conditions at all times; Washing of construction equipment and machineries along the waterways will be strictly prohibited to prevent oil & grease contamination; and On-site repair and maintenance of the construction equipment will
			be strictly prohibited
THE AIR			
Air Quality	Possible increase in the TSP level at the construction sites and adjacent areas, particularly	Short-term, Negative	• Exposed and cleared construction areas will be regularly sprayed with water to minimize dust re-suspension;
	dust pollution sensitive receptors areas such as residential, hospitals, and schools due to dust resuspension		 A 20 kph speed limit along the construction areas, particularly at dust pollution sensitive receptor areas will be strictly enforced;
	Suspension		 Temporary stockpiles of un-recycled materials and construction spoils will be covered with tarpaulin or sack materials to prevent re-suspension of particulate matters;
			 Construction spoils will be regularly hauled and disposed to areas duly-approved by the DENR and/or concerned LGUs;
			Delivery and hauling trucks will be provided with tarpaulin or sack material to minimize dust re-suspension;
			Quarterly TSP monitoring at dust sensitive receptor areas will be conducted during the pre-construction and construction phases of the project

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES		
THE AIR			
Air Quality	Possible increase in the TSP level in the affected areas due to dust re-suspension	Short-term, Negative	•
	Possible increase in the concentration levels of SO_2 and NO_2 due to exhaust gas emissions from various construction vehicles, equipment, and	Short-term, Negative	 PMS of construction equipment and machineries, and vehicles will be strictly complied with to ensure these are in good working condition at all times;
	machineries		Daily routine check-up of construction vehicles, equipment, and machineries must be strictly complied with; and
			 Quarterly SO₂ and NO₂ sampling at air pollution sensitive areas will be conducted during the pre-construction and construction phases of the project
Noise Level and Vibration	Possible increase in the noise level in the area due to operation of various construction equipment and machineries	Short-term, Negative	 Bored piles using a special boring equipment will be adopted during foundation works instead of pile driving to prevent ground vibration;
	Possible incidence of ground vibration due to foundation works and related activities		 Noise suppressors will be installed to construction equipment and machineries whenever necessary to maintain noise generated at permissible level;
			 High noise generating construction activities will be undertaken during the daytime only to minimize noise disturbance to nearby residential and other noise sensitive receptors areas;
			 Temporary noise barriers will be installed at noise sensitive receptor areas such as residential, schools, hospitals, and places of worships to maintain noise level at permissible limit; and
			 PMS of the construction equipment and machineries will be strictly complied with to ensure that these are in good working conditions at all times

Table 4.1-1 Impact Ma			
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES		
THE PEOPLE			
Assets and Income	A total of 36 residential structures (45 households or 175 people) and two (2) commercial structures (i.e. small-scale eatery/carenderia) will be affected by the alignment	Long-term, Negative	 A final Resettlement Action Plan (RAP) with full consensus with the PAPs, and inventories of land and other properties will be prepared prior to implementation of the project; Just compensation in accordance with LARRIPP/WBOP 4.12 will be accorded to PAPs for loss of assets and source of livelihood;
	Approximately 67 farm land lots (104 ha) will be affected. About 39% are landowners; about 10% are tenants; and about 51% are rent-free occupants with permission from the owners		 Construction activities will limited within the required ROW of 50-60 m to avoid further displacement of residential and commercial structures, and loss of assets and livelihood
	Loss of commercial crops like pineapple, coffee, coconut, papaya, cassava, and banana	Long-term, Negative	A final RAP with full consensus with the PAPs, and inventories of land and other properties will be prepared prior to implementation of the project; and
			Just compensation in accordance with LARRIPP/WBOP 4.12 will be accorded to PAPs for loss of assets and source of livelihood
	Disturbance to agricultural activities along the proposed CALA Expressway alignment	Short-term, Negative	Temporary crossings will be provided to ensure safe and unhampered movements of farmers to and from their agricultural lands; and
			Just compensation in accordance with LARRIPP/ WBOP 4.12 will be accorded to PAPs for loss of assets and source of livelihood
	Accidental filling up of farmlands adjacent to the construction areas	Short-term, Negative	Temporary stockpiles of construction materials, construction spoils and debris will be located away from agricultural lands to prevent accidental filling up of farmlands adjacent to the construction sites; and
			• In case of accidental filling up, damage compensation in accordance with LARRIPP/WBOP 4.12 will be accorded to farmers for loss of income

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES		
THE PEOPLE			
Temporary Employment	Generation of temporary employment to qualified residents in the direct and indirect impact areas	Short-term, Positive	 Qualified workers duly endorsed by the Brgy. Captains from the impact areas will be given priority in hiring during implementation of the project
Basic Social Service Utilities	Interruption of water supply in areas serviced by the wells located in Brgy. Sabutan, Silang, Cavite Possible interruption of power supply and telecommunication service	Short-term, Negative	 Displaced wells in Brgy. Sabutan will be restored and replaced; Close coordination with concerned utility companies will be undertaken to expedite relocation and restoration of the affected utilities; Relocation and restoration of affected social service utilities will be undertaken in the shortest possible time to minimize inconvenience to the affected public; and Affected residents will be notified in advance to enable them to prepare and undertake necessary measures. Notice to the public shall be posted at conspicuous areas such as municipal and barangay halls, schools, and places of worships
Social Service Facilities	Increase in demand of basic social service facilities such as health centers and places of worships due to in-migration of workers	Short-term, Negative	Basic social service facilities such as health care center, eating spaces, and places of worships will be provided in the work sites so as to eliminate competition between migrant workers and local residents
Occupational Health and Safety	Long-term exposure of workers, especially heavy equipment operators to high noise level may lead to hearing impairment Long-term exposure of workers, especially heavy equipment operators to exhaust gas emissions may result to upper respiratory ailments	Short-term, Negative	Workers will be provided with adequate Personal Protective Equipment (PPE) such as ear muffs, gas/protective masks, hard hats, safety boots, safety gloves, reflectorized vests, and other related safety gears; Wearing of the provided PPEs will be strictly implemented; Personnel will be trained on safety procedures and educated on health standards;
	Direct contact of workers handling toxic materials may lead to chronic diseases		 Personnel will be comprehensively trained on handling of toxic materials;

Table 4.1-1 Impacts M	able 4.1-1 Impacts Management Plan (10/17)				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures		
PRE-CONSTRUCTION A	ND CONSTRUCTION PHASES				
THE PEOPLE					
Occupational Health and Safety	Long-term exposure of workers, especially heavy equipment operators to high noise level may lead to hearing impairment	Short-term, Negative	 Medical clinic and first aid station facilities supervised by a registered nurse will be provided in the work areas and field offices; 		
	Long-term exposure of workers, especially heavy equipment operators to exhaust gas emissions		An Emergency Response Plan will be formulated to quickly respond to any type of emergency situation within the construction area;		
	may result to upper respiratory ailments		Medical check-up of workers will be regularly conducted;		
	Direct contact of workers handling toxic materials may lead to chronic diseases		 PMS of the heavy equipment, machineries, and vehicles is strictly complied with to ensure that these are in good conditions at all times; 		
			An emergency vehicle on stand-by will be provided within the construction areas at all times		
Waste Management, Sanitation, and Public Health	Possible spread of communicable diseases due to improper wastes management within the construction sites, workers' camps, and field	Short-term, Negative	 Adequate temporary sanitation facilities such as portable toilets and trash bins will be provided at all construction sites, workers' camps, and field offices; 		
	Potential spread of communicable diseases in the receiving communities due to in-migration of workers Possible spread of sexually transmitted diseases (STDs)		Proper waste segregation scheme will be strictly enforced;		
		Domestic and solid wastes generated by the workers will be regularly hauled and disposed to designated dumpsite in Brgy. Lalaan I and Brgy. Tubuan I, Silang, Cavite, and approved dumpsites in Biñan and Santa Rosa Cities;			
		Inspection of workers' camps and field offices will be conducted daily to ensure good housekeeping;			
			Medical screening of migrant workers will be undertaken during hiring period;		
			Regular medical check-up of workers will be conducted; and		
			Group consultations will be undertaken to promote awareness among the community on how to prevent transmission of STDs		

Table 4.1-1 Impact Ma				
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures	
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES			
THE PEOPLE				
Public Safety	Safety of residents and pedestrians near the construction areas	Short-term, negative	 All excavation areas will be enclosed with metal sheets and barriers will be installed at the construction areas to limit access to the public, especially children; 	
			 Pedestrians crosswalks will be provided at critical construction areas such as built-up areas, schools, places of worships, hospitals, and residential areas; 	
			 Adequate lighting and reflectorized warning signs will be installed within the construction sites to ensure safety of public, especially during nighttime; and 	
			 Well-trained traffic aides and flagmen will be designated at critical construction sites such as those adjacent to residential and built- up areas to assist pedestrians; 	
Safety of Motorists Safety of motorists plying the E. Aguinaldo Highway, Silang, Cavite section, Nuvali Spine Road, Laguna Boulevard, Nuvali Road, Mamplasan Overpass-Greenfield Parkway Road,	Short-term, Negative	 Adequate lighting and reflectorized warning signs will be installed along the entire construction sites, particularly at critical areas such as bridge sites and interchange locations to ensure safety of motorists, especially during nighttime; 		
	and other main and secondary roads crossed by the proposed CALA Expressway alignment Safety of motorists at bridge and interchange construction sites	the proposed CALA Expressway alignment		 A sound Traffic Management Plan (TMP) and re-routing schemes along major roads, bridge sites and interchange locations duly approved by the concerned LGUs will be strictly implemented;
			Well-trained traffic aides and flagmen will be assigned along the major roads, bridge sites, interchange locations, and other critical construction sites such as those adjacent to residential and built- up areas to direct traffic and assist motorists; and	
			Parking of idle construction equipment and vehicles along the roads will be prohibited, especially during nighttime	

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
PRE-CONSTRUCTION A	AND CONSTRUCTION PHASES	I	
THE PEOPLE			
Traffic	Possible traffic congestion along E. Aguinaldo Highway, Silang, Cavite section, Nuvali Spine Road, Laguna Boulevard, Nuvali Road, Mamplasan Overpass-Greenfield Parkway Road, and other main and secondary roads intersected by the proposed CALA Expressway alignment Traffic congestion at bridge and interchange construction sites	Short-term, Negative	 A comprehensive Traffic Impact Assessment (TIA) will be prepared during the DED to address the traffic congestion issues that may arise during implementation of the project along the major arterial roads surrounding the study area; A sound TMP and re-routing schemes duly approved by the concerned LGUs will be strictly implemented to minimize traffic congestions along bridge sites, interchange locations, and other busy construction areas; Well-trained traffic aides and flagmen will be assigned along the major roads, bridge sites, interchange locations, and other busy areas to direct traffic; Parking/waiting time of construction vehicles and equipment along major roads and busy areas will be limited; and Delivery and transport of fabricated construction materials will be done during nighttime
DEMOBILIZATION/DEC	OMMISSIONING PHASE		dono daming mgmamo
THE LAND			
Geology	Stability of cut slopes, landslide and erosion prone areas	Long-term, Negative	 The Contractor must ensure that: Re-vegetation of the exposed and cleared slopes is in place; Slope and pier protection with retaining structures are in place; and Angle of repose along cut sections are maintained A joint site inspection between the Environmental Safety and Health Officer (ESHO) of the Contractor, representatives from the DPWH, concerned LGUs, representatives from the DENR Region IV-A, and community leaders of affected barangays will be undertaken to ensure that protection measures along cut slopes landslide and erosion prone areas are in place

Table 4.1-1 Impacts M	Table 4.1-1 Impacts Management Plan (13/18)					
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures			
DEMOBILIZATION/DECOMMISSIONING PHASE						
THE LAND						
Terrestrial Biology (Flora) Forest Vegetation	Replacement of cut trees Tree planting along the National Roads/newly constructed CALA Expressway	Long-term, Positive	 The Contractor must ensure that: The survival rate of the tree species introduced at the reforestation area designated by the DENR Region IV-a is established: 			
	·		 The survival rate of the trees planted along the National Roads as per DPWH D.O. 131, Series of 1995, is established 			
			 A joint site inspection between the (ESHO) of the Contractor, DPWH representatives, representatives from the concerned LGUs, representatives of DENR Region IV-A, and community leaders of affected barangays will be conducted to ensure that reforestation and tree planting activities are in place 			
Terrestrial Biology	Revegetation of cut slopes and embankment	Long-term, Positive	The Contractor must ensure that:			
(Flora) Agricultural	areas, and landscaping of areas stripped of vegetation cover	of	Revegetation of the cut slopes and embankment areas is in place;			
Vegetation			Landscaping of areas stripped of vegetation cover is in place; and			
			 A joint site inspection between the (ESHO) of the Contractor, DPWH representatives, representatives from the concerned LGUs, representatives of DENR Region IV-A, and community leaders of affected barangays will be conducted to ensure that re- vegetation activities are in place 			
THE WATER						
Surface Hydrology	Possible impediment of water flow of waterways crossed by the alignment due to abandoned construction spoils and debris	Short-term, Negative	The Contractor must ensure that all temporary stockpiles of construction spoils and debris are totally removed from the construction areas and are properly disposed to the designated dumpsite in Brgy. Lalaan I and Brgy. Tubuan I in Silang, Cavite and approved dumpsites in Biñan and Santa Rosa Cities and not abandoned in the construction areas; and			

Table 4.1-1 Impacts I	Table 4.1-1 Impacts Management Plan (14/18)					
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures			
DEMOBILIZATION/DEC	OMMISSIONING PHASE					
THE WATER						
Surface Hydrology	Possible impediment of water flow of waterways crossed by the alignment due to abandoned construction spoils and debris	Short-term, Negative	A joint site inspection between the ESHO of the Contractor, DPWH representatives, representatives from the Solid Waste Management and Disposal Office of the concerned LGUs, representatives of DENR Region IV-A, and community leaders of affected barangays will be conducted to ensure that all bridge sites are free from construction spoils and debris, and water along the rivers and creeks are free flowing			
Groundwater	Possible contamination of water tables due to abandoned used oils and other toxic materials	Long-term, Negative	The Contractor must ensure complete closure of motor pool area;			
			The temporary storage depot provided in the motor pool area will be completely dismantled and all toxic wastes such as used oils worn out motor parts, and other toxic chemicals will be disposed to sites duly approved by DENR Region IV-A; and			
			• A joint site inspection between ESHO of the Contractor, DPWH representatives, representatives from the Solid Waste Management and Disposal Office of the concerned LGUs, representatives of DENR Region IV-A, and community leaders of affected barangays will be conducted to ensure that the motor pool area is completely closed and all temporary storage facilities are dismantled and all toxic wastes are properly disposed to sites duly approved by the DENR Region IV-A			
Water Quality	Possible contamination of the waterways crossed by the CALA Expressway alignment due to abandoned domestic and solid wastes	Short-term, Negative	 All temporary sanitation facilities will be dismantled and removed from the construction sites immediately after construction works are completed, particularly those near the waterways; 			
			 All remaining solid and domestic wastes will be properly disposed to the designated dumpsite in Brgy. Lalaan I and Brgy. Tubuan I in Silang, Cavite and approved dumpsites in Biñan and Santa Rosa Cities; and 			

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures			
DEMOBILIZATION/DECOMMISSIONING PHASE						
THE WATER						
Water Quality	Possible contamination of the waterways crossed by the CALA Expressway alignment due to abandoned domestic and solid wastes	Short-term, Negative	 A joint site inspection between the ESHO of the Contractor, representatives from DPWH, representatives from the Solid Waste Management and Sanitation Office of the concerned LGUs, and community leaders of affected barangays will be conducted to ensure that all temporary sanitation facilities are dismantled and no wastes are abandoned at the construction sites, particularly those adjacent to the waterways 			
	Possible siltation of the waterways crossed by the CALA Expressway alignment	Short-term, Negative	 All temporary stockpiles of un-recycled soil materials and construction spoils will be removed and properly disposed to the designated dumpsite in Brgy. Lalaan I and Brgy. Tubuan I in Silang, Cavite and approved dumpsites in Biñan and Santa Rosa Cities; and 			
			 A joint site inspection between the ESHO of the Contractor, DPWH representatives, representatives from the Solid Waste Management and Disposal Office of the concerned LGUs, and community leaders of affected barangays will be conducted to ensure that stockpiles of un-recycled soil materials and construction spoils are not abandoned anywhere near the waterways 			
THE PEOPLE						
Basic Social Service Utilities	Extended interruption of water and power supplies, and telecommunication lines	Short-term, Negative	 The Contractor must ensure that the displaced wells in Brgy. Sabutan, Silang, Cavite are relocated and restored to normal function; 			
			 Prompt relocation and restoration to normal functions of water and power supplies, and telecommunication lines must be ensured by the Contractor; 			

Table 4.1-1 Impacts M	Table 4.1-1 Impacts Management Plan (16/18)					
Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures			
DEMOBILIZATION/DECOMMISSIONING PHASE						
THE PEOPLE						
Basic Social Service Utilities	Extended interruption of water and power supplies, and telecommunication lines	Short-term, Negative	• A joint site inspection between the ESHO of the Contractor, representatives from the concerned utility companies, representatives from the concerned LGUs, representative from the DPWH, and leaders of affected communities will be conducted to ensure replacement, relocation, and complete restoration of affected utility service facilities			
Waste Management, Sanitation, and Public Health	Possible spread of communicable diseases due to abandoned solid and domestic wastes	Short-term, Negative	 All temporary sanitation facilities will be dismantled and removed from the construction sites, workers' camps, and field offices immediately after construction works are completed; All remaining solid and domestic wastes will be properly disposed 			
			to the designated dumpsite in Brgy. Lalaan I and Brgy. Tubuan I in Silang, Cavite and approved dumpsites in Biñan and Santa Rosa Cities; and			
			• A joint site inspection between the ESHO of the Contractor, representatives from DPWH, representatives from the Solid Waste Management and Sanitation Office of the concerned LGUs, and community leaders of affected barangays will be conducted to ensure that all temporary sanitation facilities are completely dismantled and no wastes are abandoned at the construction sites, workers' camps, and temporary field offices			
Illegal Settlement	Permanent and illegal settlement at workers camps and field offices	Long-term, Negative	The Contractor must ensure complete closure of all temporary facilities such as bunk houses and field offices to prevent permanent and illegal settlement; and			
			• A joint site inspection between the ESHO of the Contractor, representatives from DPWH, concerned LGUs, and community leaders of affected barangays will be conducted to ensure complete closure of workers' camps and temporary field offices			

		Duration and Type of impacts	Mitigation/Enhancement Measures
OPERATIONAL PHASE			
THE LAND			
Land Use	Possible conversion of marginally utilized agricultural lands adjacent to the newly constructed CALA Expressway, particularly in Brgy. Kaong, Sabutan, Tibig, Carmen, and Inchican in Silang, Cavite into other uses	Long-term, Negative	Concerned LGUs must pass necessary ordinances and strictly implement such to support existing legislations prohibiting illegal conversion of agricultural lands into other uses
THE AIR			
Air Quality	Possible increase in TSP level in areas along the newly constructed CALA Expressway due to increase in vehicular traffic volume	Long-term, Negative	Survival rate of the trees planted along the newly constructed CALA Expressway (DPWH D.O. 131, Series of 1995) will be continuously monitored. Trees not only act as natural sieves for re-suspended dust particles, but also enhance aesthetics of the road sides; and The Philippine Clean Air Act and Anti-Smoke Belching Law will
			be strictly implemented by the concerned government agencies
	Possible increase in the level of gaseous air contaminants such as SO_2 and NO_2 due to increase in vehicular traffic volume	Long-term, Negative	Survival rate of the trees planted along the newly constructed CALA Expressway (DPWH D.O. 131, Series of 1995) will be continuously monitored. Trees absorb gaseous air pollutants and convert them into oxygen through transpiration process; and The Philippine Clean Air Act and Anti-Smoke Belching Law will be strictly implemented by the concerned government agencies
Noise Level	Possible increase in the present level of noise along the newly constructed CALA Expressway, particularly at noise sensitive receptor areas due to increase in volume of vehicular traffic	Long-term, Negative	 The "No Blowing of Horns" at noise sensitive receptor areas such as schools, hospitals, and places of worships will be strictly enforced; If necessary, adequate noise barriers will be installed at noise

Environmental Component Likely to be Affected	Potential Impact	Duration and Type of impacts	Mitigation/Enhancement Measures
THE PEOPLE			
Economy	The newly constructed CALAX Expressway will: > Provide fast, safe, comfortable and reliable means of transport in Cavite and Laguna Provinces; > Decongest traffic of roads in Cavite and Laguna Provinces; > Support economic development by providing better transport access to economic/industrial zones in the area; and > Support sound urbanization in the areas traversed by the CALA Expressway	Long-term, Positive	Periodic inspection and maintenance of the newly constructed CALA Expressway based on standard DPWH inspection and maintenance procedures for roads and bridges will be undertaken to maximize optimum service to road users
Road Safety	Safety of motorists plying the newly constructed CALA Expressway	Long-term, Negative	 Road signs and markings, information display board, and streetlights, especially along bridges and interchanges will be properly maintained; and Periodic inspection and maintenance of the newly constructed CALA Expressway based on standard DPWH inspection and maintenance procedures for roads and bridges will be undertaken to maximize optimum service to road users

Social Development Plan and Information Education and Communication (IEC)

5 SOCIAL DEVELOPMENT PLAN (SDP), AND INFORMATION EDUCATION AND COMMUNICATION (IEC)

5.1 SDP AND IEC FRAMEWORK IMPLEMENTATION

5.1.1 Social Development Plan

Implementation of Social Development Plan (SDP) shall be in terms of providing livelihood restoration and improvement for Project-Affected Persons (PAPs) who will be severely affected by land acquisition. As defined in DPWH's Land Acquisition, Resettlement, Rehabilitation, and Indigenous Peoples Policy (LARRIPP), Series of 2007, "severe" effect refers to cases wherein acquisition of land is more than 20% of the landholding, or less than 20% but the remaining portion is no longer economically viable. Whenever the livelihood of PAPs is land-based, e.g., as in the case of Silang, Cavite, wherein the primary source of livelihood is farming, livelihood restoration shall be provided, if land-for-land is not feasible. Details on the SDP shall be included in the full-blown RAP to be prepared after the completion of the Parcellary Survey (during conduct of Detailed Engineering Design).

5.1.2 Information Education and Communication (IEC)

IEC meetings were held at various levels of concerned Local Government Units (LGUs) to ensure that all identified stakeholders are fully informed, consulted, and encouraged to participate in any decision-making that will affect their lives. These meetings open opportunities for discussion, which allowed the DPWH and Environmental Consultant to address issues raised. Upon careful consideration, such concerns can be incorporated in detailed engineering design and resettlement plan. By doing so, delays in implementation due to unforeseen conflicts are avoided.

During the said consultation meetings the **Scoping matrix** was also presented and discussed. Information campaign materials were also given to provide information on the process of acquiring the R-O-W. This approach was adopted as part of the Resettlement Action Plan (RAP) prepared for the project.

A total of **14 IEC meetings** were conducted. **Five (5)** of these are with the LGUs--- **two** (2) at the provincial, and **three (3)** city/municipal level; **eight (8)** barangay/PAPs-level and one (1) with the officers of *Samahang Magsasaka sa Carmen* (SAMACA) Farmer's Organization in Brgy. Carmen. Highlights of the IEC Meetings, including photographs taken are presented in **Appendix A**.

Aside from IEC Meetings, the Consultant visited the Provincial Assessor's Office (PAO) of Cavite and Laguna, Municipal Assessor Office (MAO) of Silang, City Assessors Offices (CAO) of Biñan and Sta. Rosa as part of RAP preparation. The project was also presented to the different department and offices of the Local Government Unit (LGU) such as Treasury, Municipal Agrarian Reform Office (MARO), Provincial Agararian Reform Office (PARO), National Irrigation Authority (NIA), National Historical Institute (NHI), and the Department of Agrarian Reform (DAR).

Given in **Table 5.1.2-1** are the IEC meetings completed by the EIA and RAP Teams. Other coordination meetings and activities are presented in **Table 5.1.2-2**.

Table 5.1.2-1 Meetings Conducted for the Proposed CALA Expressway Project (Laguna Section) 1/3

Date/Time	LGU	Participants	Торіс
October, 2011 – February 2012	General area of CALAX alignment	Central and Provincial DPWH Offices, Land owners, DENR-EMB, Laguna Lake Development Authority (LLDA)	Briefing on the Project; Identify the problems and possible routes,
February 15, 2012	Cavite government	City Officials	Describe project plan and projected impacts according to the scoping matrix on social and environmental consideration, open discussions
February 15, 2012	Municipality of Silang, Cavite and its barangays	PAPs, Municipal Officials, Barangay Officials, People's Organization, Farmer's Association, NGO, Homeowner's Association, Transport Group	
February 17, 2012	Biñan City Government and its barangays	, , , , , , , , , , , , , , , , , , , ,	Describe project plan and projected impacts according to the scoping matrix on social and environmental consideration, JICA's policy on relocation and compensation, explain laws and protocols of Philippines government on road projects, bring up and discuss project affected
February 17, 2012	Santa Rosa City Government and its barangays		people's concerns and requests
February 20, 2012	Barangays Sabutan and Biga, Silang, Cavite	Barangay Officials, Farmer's Association, Senior citizen's association,, Land owners, Homeowner's Association, Women's group	

Table 5.1.2-1 Meetings Conducted for the Proposed CALA Expressway Project (Laguna Section) 2/3

Date/Time	LGU	Participants	Торіс
February 20, 2012	Barangay Kaong in Silang	Barangay Officials, Farmer's Association, Senior citizen's association,, Land owners, Homeowner's Association, Women's group	Describe project plan and projected impacts according to the scoping matrix on social and environmental consideration, JICA's policy on relocation and compensation, explain laws and protocols of Philippines government on road projects, bring up and discuss project affected
February 21, 2012	Barangay Tibig in Silang	Senior Citizens Association Health Organization, Transport Group and Women's Organization; Human Rights Organization, Structure and Landowners (PAPs)	people's concerns and requests
February 22, 2012	Barangay Carmen in Silang	SAMACA (NGO); SAMACA means "SamahanngMagsasakang Carmen" (Farmer's Organization in Brgy. Carmen)	
February 23, 2012	Barangay Biñan, Malamig, Timbao and Loma of Biñan, Laguna	Barangay Officials of Barangay Biñan, Malamig, Timbao and Loma; Senior Citizens Association, Womens Organization, Farmers Organization, Youth Organization and Project Affected Persons (PAPs)	Describe project plan and projected impacts according to the scoping matrix on social and environmental consideration, JICA's policy on relocation and compensation, explain laws and protocols of Philippines government on road projects, bring up and discuss project affected people's concerns and requests
February 23, 2012	Barangays Pulong Sta. Cruz and Malitlit	Barangay Officials of Barangays Pulong Sta. Cruz and Malitlit; Senior Citizens Association Health Organization and Women's Organization	

Table 5.1.2-1 Meetings Conducted for the Proposed CALA Expressway Project (Laguna Section) 3/3

Date/Time	LGU	Participants	Торіс
February 24, 2012	Barangays Munting Ilog, Carmen and Hukay in Silang	0,	Describe project plan and projected impacts according to the scoping matrix on social and environmental consideration, JICA's policy on relocation and compensation, explain laws and protocols of Philippines government on road projects, bring up and discuss project affected people's concerns and requests
February 24, 2012	Barangays Inchican in Silang	Barangay Officials of Barangays Inchican; Senior Citizens Association, Women's Organization, Health Organization, Farmer's Organization, Homeowners and Project Affected Persons (PAPs)	
February 29, 2012	Provincial official of Laguna province	LGUs, CBOs	
	Barangays Don Jose and Sto. Domingo in Sta. Rosa, Laguna	Barangay Officials of Barangays Sto. Domingo and Don Jose, Senior Citizens Association, Women's Organization, Youth Organization, Farmers Organization and Transport Group	

Table 5.1.2-2 Other Coordination Meetings in Relation to the Proposed CALA Expressway Project (Laguna Section) 1/2

Date	Office	Findings	Venue
January 07, 2012	National Irrigation Authority (NIA)	No irrigation facilities to be affected by the proposed CALAx Project (Laguna Section)	NIA Office, Pila, Laguna
January 16 2012	Provincial Assessors Office	Gathered data on landowners to be affected and obtained Schedule of Market Values for land and structures	TreceMartires City, Cavite
January 16 2012	Provincial Agriculture Office	Identified crops and other related data on farming	TreceMartires City, Cavite
January 16 2012	Provincial Agrarian Reform Office	Identified list of registered tenants within the proposed project alignment	TreceMartires City, Cavite
January 17 2012	National Historical Institute	Identified national historical sites and heritage within the project area	ErmitaManila,
February 02 2012	Environmental Remote Sensing and Geo Information Laboratory Forestry	Collected maps of Mt. Makiling	UP Los Banos, Laguna
January 12 2012	City Assessor of Santa Rosa, City	Gathered data on landowner's to be affected and the Schedule of Market Values for land and structures	New Government Center of Santa Rosa, Laguna

Table 5.1.2-2 Other Coordination Meetings in Relation to the Proposed CALA Expressway Project (Laguna Section) 1 of 2

Date	Office	Findings	Venue
January 12 2012	, City Assessor of Biñan City, Laguna	Gathered data on landowner's to be affected and the Schedule of Market Values for land and structures	City Hall of Biñan City, Laguna
February 09 2012	, Municipal Assessors Office of Silang, Cavite		Municipal Hall of Silang, Cavite
January 31	, Protected Areas and	Collect maps of Taal Volcano Protected Area	Quezon City

2012		Wildlife Bureau		
January 2012	12,	Municipal Agriculture Office of Silang, Cavite	Identify crops and other related data on farming	Municipal Hall of Silang, Cavite
January 2012	16,	City Agriculture Office of Biñan City, Laguna		City Hall of Biñan City, Laguna
January 2012	16,	City Environment and Natural Resources Office	Identify possible location of dumpsite for unsuitable soils	City Hall of Biñan City, Laguna

During the IEC meetings, the project in terms of ROW width, type of surfacing, alignments, plan, design including cross sections for different type of road and target implementation schedule, among others, were discussed to the PAPs. The conduct of socioeconomic survey was also described in detail. The summary of issues and concerns raised during the said meetings are summarized in Table 5.1.2-3.

Table 5.1.2-3 Summary of Issues and Concerns Raised during IEC (1/2)

Agencies/Organization	Issues and Concerns	Issue Addressed by
LGUs of Binan PAPs of Tibig	Environmental concerns like vehicular gaseous emissions and noise problems	EIA Team
LGUs of Binan	Asking for more dialogues between JICA and LGUs before the start of the project	EIA Team
LGUs of Binan PAPs of Malamig	Benefits of the project	EIA Team
PAPs of Carmen, Tibig	Right to refuse the project	DPWH-ESSO
PAPs of Carmen	Privatization of road; especially tollway	DPWH-ESSO
PAPs of Carmen LGUs of Sta. Rosa	Concerns on losing their livelihood; effects on agricultural lands	EIA Team
PAPs of Carmen, Inchican, Tibig, NGO	Request for increase in the disturbance compensation	DPWH-ESSO
PAPs of Kaong, Sabutan, Tibig LGUs of Laguna	Concerned on their land if it will be divided by the project; Accessibility of other land, service roads	EIA Team
PAPs of Kaong, Malamig	Start of RROW and payment	DPWH-ESSO
PAPs of Kaong, Sabutan, Tibig LGUs of Silang, Laguna	Issues with the alignment; moving the alignment	DPWH-ESSO
PAPs of Kaong	Concerns with the width of the road	DPWH-ESSO
PAPs of Malamig LGUs of Cavite	Will they benefit from the tollway and toll fees	DPWH-ESSO
PAPs of Malamig	Social Impact concerns; long-term programs	EIA Team

Table 5.1.2-3 Summary of Issues and Concerns Raised during IEC (2/2)

Agencies/Organization	Issues and Concerns	Issue Addressed by
PAPs of Pulong Sta. Cruz	Employment during construction stage of the project	DPWH-ESSO
PAPs of Pulong Sta. Cruz	Complete facility of the CALAx project like lighting, signboards, emergency hotline	DPWH-ESSO
PAPs of Sabutan, Tibig	Concern on the project crossing the river	EIA Team
PAPs of Sabutan	Feasibility of the project	DPWH-ESSO
LGUs od Sta. Rosa	May cause traffic	DPWH-ESSO
PAPs of Tibig	Complaining of favoring the developers	DPWH-ESSO

Chapter 6 Environmental Monitoring Plan

6 ENVIRONMENTAL MONITORING PLAN

6.1 ENVIRONMENTAL MONITORING PLAN (EMOP)

The Environmental Monitoring Plan (EMoP) represented in **Table 6.1-1** is developed in order to institute a workable regulatory means to ascertain compliance to the ECC issued, as well as other environmental laws and regulations during the Pre-Construction and Construction Phases, Demobilization/Decommissioning Phase, and Operational and Maintenance Phase. It shall also serve as guide to Management, Technical Staff and Construction Contractors (and its Sub-Contractors) in ensuring that the least disturbance to the environment is achieved in all aspects of project implementation.

These are environmental commitments that may be validated and assessed during the actual construction and operation of the project.

Table 6.1-1 Environmental Monitoring Plan (1/11)										
Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost						
PRE-CONSTRUCTION AND CONSTRUCTION PHASES										
Cut slope sections, embankment areas, and bridge sites	Daily	Site inspection using Monitoring Checklist	Based on IMP	ESHO of the Contractor and DPWH, in close coordination with DENR- Mines and Geosciences Bureau (MGB) Region IV-A						
				costs						
Along the entire stretch of the alignment, particularly bridge sites, interchange location, and agricultural areas	Daily during the tree cutting activity	Site inspection using Monitoring Checklist	Conditions stipulated in the "Permit To Cut" to be secured by the Contractor from DENR- FMB Region IV-	ESHO of the Contractor , DPWH in close coordination with the DENR-FMB Region IV-A						
				To be determined during DED						
Along the waterways, particularly Malaking Ilog River, Lumbia River, and Malindig River	Daily	Site inspection using Monitoring Checklist	Based on IMP	ESHO of the Contractor, DPWH in close coordination with representatives from the Waste Management and Disposal Office of the concerned LGUS To be determined during DED						
	CONSTRUCTION PHASES Cut slope sections, embankment areas, and bridge sites Along the entire stretch of the alignment, particularly bridge sites, interchange location, and agricultural areas Along the waterways, particularly Malaking Ilog River, Lumbia	Stations to be Monitored CONSTRUCTION PHASES Cut slope sections, embankment areas, and bridge sites Along the entire stretch of the alignment, particularly bridge sites, interchange location, and agricultural areas Along the waterways, particularly Malaking llog River, Lumbia Frequency of Monitoring Daily Daily	Stations to be Monitored Frequency of Monitoring CONSTRUCTION PHASES Cut slope sections, embankment areas, and bridge sites Daily Site inspection using Monitoring Checklist Daily during the tree cutting activity Site inspection using Monitoring Checklist Along the entire stretch of the alignment, particularly bridge sites, interchange location, and agricultural areas Along the waterways, particularly Malaking llog River, Lumbia Site inspection using Monitoring Checklist	Stations to be Monitored Frequency of Monitoring Methods of Analysis/Execution CONSTRUCTION PHASES Cut slope sections, embankment areas, and bridge sites Daily Site inspection using Monitoring Checklist Along the entire stretch of the alignment, particularly bridge sites, interchange location, and agricultural areas Along the waterways, particularly Malaking llog River, Lumbia Frequency of Monitoring Methods of Analysis/Execution Site inspection using Monitoring Checklist Along the waterways, particularly Malaking llog River, Lumbia						

Table 6.1-1 Environmental Monitoring Plan (2/11)									
Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost				
PRE-CONSTRUCTION AND	PRE-CONSTRUCTION AND CONSTRUCTION PHASES								
THE WATER									
Groundwater contamination	Motor pool area	Daily	Site inspection using Monitoring Checklist Investigation based on complaints received from affected population	Based on IMP	ESHO of the Contractor, DPWH in close coordination with the DENR-Environmental Quality Division (EQD) Region IV-A Part of the construction costs				
Water Quality (Total Coliform, pH, oil & grease, lead, TSS, BOD, DO, and temperature)	Waterways crossed by the alignment, particularly Malking Ilog River, Lumbia River, and Malindig River	Weekly Twice a year	Site inspection of work sites using Monitoring Checklist Water sampling along Malaking Ilog River, Lumbia River, and Malindig River	Visual only CLASS C WATERS Total Coliform 5,000 MPN/100 mI Oil & Grease 5.0 mg/L pH 6.5-8.5 TSS Max. 30 mg/L increase BOD Max. 20 mg/L increase DO Not less than 5.0 mg/L Lead 0.05 mg/L Temperature Not more than 3°	ESHO of the Contractor, DPWH in close coordination with the DENR-EQD Region IV-A P5,000.00 per sampling activity				

				increase	
Table 6.1-1 Environme	ntal Monitoring Plan (3/11)			•	
Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost
PRE-CONSTRUCTION A	ND CONSTRUCTION PHASES				
THE AIR					
Total Suspended Particulates (TSP)	At all cleared construction sites and all identified dust sensitive receptor areas, such as residential, hospitals, and schools	Daily	Site inspection using Monitoring Checklist	Visual	ESHO of the Contractor, DPWH in close coordination with the DENR-EQD Region IV-A
		Twice a year	Air quality monitoring: Gravimetric Method	TSP 300 μg/Ncm (1 hour)	Cost included in Contractor's Bid — Approx. P200,000.00 for entire duration of construction phase
SO ₂ and NO ₂	At all identified air pollution sensitive receptor areas, such as residential, hospitals, and schools	Daily Twice a year	Site inspection using Monitoring Checklist Air quality monitoring: Pararosalinine Method for SO ₂ Griess Saltzman Method for NO ₂	NO ₂ 260 μg/Ncm (1 hour) SO ₂ 340 μg/Ncm (1 hour)	ESHO of the Contractor, DPWH in close coordination with the DENR-EQD Region IV-A Cost included in Contractor's Bid — Approx. P400,000.00 for entire duration of construction phase
Noise Level	At all identified noise sensitive receptor areas, such as residential, hospitals, places of worships, and schools	Daily for high noise level generating activities; Weekly for other activities during construction Investigation on a complaint basis shall be immediately	Digital Noise Level Meter and Monitoring Checklist	Class B "A section which is primarily use for commercial purposes" 60 dBA (Daytime) 65 dBA (Morning) 60 dBA (Evening) 55 dBA (Nighttime)	ESHO of the Contractor, DPWH in close coordination with the DENR-EQD Region IV-A (Cost already included in Air Quality above)

		undertaken							
Table 6.1-1 Environmenta	Table 6.1-1 Environmental Monitoring Plan (4/11)								
Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost				
PRE-CONSTRUCTION AND	CONSTRUCTION PHASES								
THE AIR									
Noise Level	At all identified noise sensitive receptor areas, such as residential, hospitals, places of worships, and schools	Daily for high noise level generating activities; Weekly for other activities during	Digital Noise Level Meter and Monitoring Checklist	Class C "A section which is primarily reserved as a light industrial area"	ESHO of the Contractor, DPWH in close coordination with the DENR-EQD Region IV-A				
		construction	construction 6. 77 55 66		(Cost already included in Air Quality above)				
THE PEOPLE									
Compensation of affected residential and agricultural lands in accordance with LARRIPP/WBOP 4.12	Along the ROW of the alignment	Prior to Start of Construction	Duly completed legal documents, particularly the Deed of Absolute Sale (DAS)	Based on full-blown RAP	City/Municipal RAP Implementation Committees (CRIC/MRIC) in close coordination with DPWH Regional Offices and Provincial LGUs				
Compensation of affected residential and commercial structures	Along the ROW of the alignment	Prior to Start of Construction	Duly completed legal documents, particularly the Agreement to Demolish and Remove Improvement (ADRI)	Based on Full-blown RAP	CRIC/MRIC in close coordination with DPWH Regional Offices and Provincial LGUs				
Compensation for affected perennial crops (trees)	Along the ROW of the alignment	Prior to Start of Construction	Duly completed legal documents, particularly the ADRI	Based on Full-blown RAP	CRIC/MRIC in close coordination with DPWH Regional Offices and Provincial LGUs				

Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost
PRE-CONSTRUCTION AND	CONSTRUCTION PHASES				
THE PEOPLE					
Supply of Basic Social Service Utilities	Areas which will experience power/water supply interruptions due to disturbance of underground and overhead utility lines (water, electricity, telephone) during excavation and erection of fixed facilities.	Daily Depends on schedule of interruption	Site inspection and investigation based on complaints received from affected population	Based on IMP	ESH Officer of the Contractor, DPWH, in close coordination with the concerned utility companies, community leaders of affected barangays in Silang Cavite, and Santa Rosa and Biñan Cities, and concerned LGUS
					Part of the construction costs
Compliance of Contractor to occupational health and safety rules and regulation	All construction areas, worker's camps, and temporary field offices	Daily	Site inspection of work areas including temporary sanitation facilities, to be recorded in Monitoring Checklist	Based on IMP	ESHO of the Contractor DWPH, in close coordination with the Health Office o concerned LGUs Part of the construction costs
Traffic Management	Along the entire stretch of the alignment, particularly major roads, bridge sites, residential areas and interchange locations	Daily	Site observation to be recorded in Monitoring Checklist	Based submitted TMP and Re-Routing Schemes approved by concerned LGUs	ESHO of the Contractor DPWH in close coordination with the concerned LGUs
					Part of the construction costs

Table 6.1-1 Environmenta	Table 6.1-1 Environmental Monitoring Plan (6/11)							
Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost			
PRE-CONSTRUCTION AND CONSTRUCTION PHASES								
THE PEOPLE								
Safety of motorists	Entire stretch of the alignment, particularly major roads and intersections, excavation areas bridge sites, and interchange locations	Daily	Site observation to be recorded in the Monitoring Checklist Investigation based on	Visual	ESHO of the Contractor DPWH, in close coordination with the concerned LGUs			
			complaints received from affected population		Part of the construction costs			
Safety of Pedestrians	hospital zones, pedestrian crossings along the industrial and commercial zones traversed by the alignment recorded in Monitoring Check		Site observation to be recorded in the Monitoring Checklist Investigation based on complaints received	Visual	ESHO of the Contractor, DPWH, traffic aides/ flagmen to be assigned by the Contractor, and concerned LGUs			
			from affected population		Part of the construction costs			
Solid and domestic wastes management and disposal	Areas where hauling of unusable excavated materials and construction spoils are necessary	Daily	Site inspection using Monitoring Checklist	Visual	ESHO of the Contractor, DPWH in close coordination with the Sanitation and Waste			
	Areas where temporary stockpiles are located	Daily	Site inspection using Monitoring Checklist		Management Disposal Office of the concerned LGUS and community			
	Work areas where temporary sanitation facilities are provided	Daily	Site inspection using Monitoring Checklist		leaders of affected barangays			
			Investigation based on complaints received from affected		Part of the construction costs			

			population						
Table 6.1-1 Environmental Monitoring Plan (7/11)									
Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost				
PRE-CONSTRUCTION AND	PRE-CONSTRUCTION AND CONSTRUCTION PHASES								
THE PEOPLE									
Liquid and solid hazardous wastes	Motor pool area	Daily	Site inspection to be recorded in the Monitoring Checklist Weighing	Visual Visual	ESHO of the Contractor, DPWH, in close coordination with the DENR-EQD Region IV- A, and concerned LGUs				
			Kg/day (solid) Liters/day (liquid)	visuai	Part of the construction costs				
DEMOBILIZATION/DECOMI	MISSIONING PHASE								
THE LAND									
Aesthetic Values	Areas stripped of vegetation cover	landscaping activities	Joint site inspection using Monitoring Checklist	Visual	ESHO of the Contractor, DPWH in close coordination with the concerned LGUs				
	Tree planting along the shoulders of the newly constructed CALA Expressway	Monthly until survival rate of the species plated is established	Site inspection using Monitoring Checklist		To be determined during DED				
Survival rate of the species introduced at the reforestation site/s	Reforestation site/s	Monthly until survival rate of the species introduced is established	Joint site inspection using Monitoring Checklist	Visual	ESHO of the Contractor, DPWH, in close coordination with the DENR-EQD Region IV- A, and concerned LGUs				
					To be determined during DED				

Table 6.1-1 Environmenta	Table 6.1-1 Environmental Monitoring Plan (8/11)								
Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost				
DEMOBILIZATION/DECOMI	MISSIONING PHASE								
THE WATER									
Water flow and siltation	All waterways crossed by the alignment, particularly Malaking Ilog River, Lumbia River, and Malindig River, and adjacent areas	Daily until all decommissioning activities are completed	Joint site inspection using Monitoring Checklist	Visual	ESHO of the Contractor, DPWH, in close coordination with the DENR-EQD Region IV- A, and concerned LGUs Part of construction costs				
Domestic and solid wastes disposal	All construction sites provided with temporary sanitation facilities adjacent to the waterways	Daily until all decommissioning activities are completed	Joint site inspection using Monitoring Checklist Investigation based on complaints received from affected population	Visual	ESHO of the Contractor, DPWH in close coordination with the Waste Management and Disposal Office of the concerned LGUS and community leaders of affected barangays Part of construction costs				
THE PEOPLE									
Complete dismantling of all temporary facilities	Workers' camp site and field offices	Daily until all decommissioning activities are completed	Joint site inspection Investigation based on reports received from affected population	-	ESHO of the Contractor, DPWH in close coordination with the concerned LGUs' Part of construction costs				

Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost
THE PEOPLE					
DEMOBILIZATION/DECOMI	MISSIONING PHASE				
Complete dismantling of the temporary sanitation facilities and proper disposal of remaining solid and domestic wastes	All work sites where temporary sanitation facilities are provided, particularly those adjacent the residential areas and waterways, workers' camp site, and temporary field offices	Daily until all decommissioning activities are completed	Joint site inspection using Monitoring Checklist Investigation based on complaints received from affected population	Visual	ESHO of the Contractor DPWH in close coordination with the concerned LGUs Sanitation and Waste Management Disposa Office, and community leaders of affected barangays Part of construction costs
Replacement and restoration of affected basic social service utilities such as deep wells, power and water supplies, and telecommunication lines	All areas where social service utilities were affected, particularly Brgy. Sabutan, Silang ,Cavite where deep wells will be displaced	Daily until operations of the affected utilities are returned to normal	Joint site inspection using Monitoring Checklist Investigation based on complaints received from affected population	Visual	ESH Officer of the Contractor, DPWH, in close coordination with the concerned utility companies, community leaders of affected barangays in Silang Cavite, and Santa Rosa and Biñan Cities, and concerned LGUs Part of construction costs

Table 6.1-1 Environmental Monitoring Plan (10/11)								
Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost			
OPERATIONAL PHASE								
THE LAND								
Illegal conversion of agricultural areas adjacent to the newly constructed CALA Expressway (Laguna Section) into other uses	Agricultural areas adjacent to the newly constructed expressway	-	Investigation based on complaints of affected population	-	Municipality of Silang, and Cities of Santa Rosa and Biñan, Laguna			
Aesthetic Values	Landscaping areas and shoulders of the newly constructed expressway	Quarterly until survival rate of species planted is established	Joint site inspection using Monitoring Checklist	Visual	DPWH/ CALA Expressway Operator			
THE AIR								
Total Suspended Particulates (TSP)	Selected dust sensitive receptor areas adjacent to the newly constructed expressway such as residential, schools, and hospitals along the	Twice a year (for 2 years)	Air quality monitoring: Gravimetric Method	TSP 300 μg/Ncm (1 hour)	DPWH/CALA Expressway Operator in close coordination with the DENR-EQD Region IV-A P10,000.00 per sampling			
					station			
SO ₂ and NO ₂	Selected air pollution sensitive receptor areas adjacent to the newly constructed expressway such as residential, schools, and hospitals along the	Twice a year (for 2 years)	Air quality monitoring: Pararosalinine Method for SO ₂ Griess Saltzman Method for NO ₂	NO ₂ 260 μg/Ncm (1 hour) SO ₂ 340 μg/Ncm (1 hour)	DPWH/CALA Expressway Operator in close coordination with the DENR-EQD Region IV-A			
					P10,000.00 per sampling station			

Parameters to be Monitored	Stations to be Monitored	Frequency of Monitoring	Methods of Analysis/Execution	DENR Standard	Implementor/Cost
OPERATIONAL PHASE					
THE AIR					
Noise Level	At selected noise sensitive receptor areas, adjacent to the newly constructed expressway such as residential, hospitals, places of worships, and schools	Quarterly	Digital Noise Level Meter and Monitoring Checklist	Class B "A section which is primarily use for commercial purposes" 60 dBA (Daytime) 65 dBA (Morning) 60 dBA (Evening) 55 dBA (Nighttime) Class C "A section which is primarily reserved as a light industrial area" 65 dBA (Daytime) 70 dBA (Morning) 55 dBA (Evening) 60 dBA (Nighttime)	DPWH/CALA Expressway Operator in close coordination with the DENR-EQD Region IV-A P5,000.00 per sampling station
THE PEOPLE					
Road signs, lane markings and lighting, particularly at bridge sites, interchanges, and toll barrier	Entire stretch of the newly constructed CALA Expressway (Laguna Section)	Periodically	Based on DPWH Standard Roads and Bridges Maintenance Procedure	-	DPWH/CALA Expressway Operator Based on DPWH Standard Roads and Bridges Maintenance Procedure

Chapter 7 Emergency Response Policy and Generic Guidelines

7 EMERGENCY RESPONSE POLICY AND GENERIC GUIDELINES

Presented in **Figure 7.1** is the organizational set up of the Emergency Preparedness and Rescue Team (EPRT) of the main Contractor. As shown in the chart, **three** (3) Team Leaders are assigned to each type of emergency situation, namely earthquakes, situations requiring clean up procedures (e.g., accidental spill of hazardous materials), and **one** (1) to head a medical team who will be available to the other **two** (2) teams.

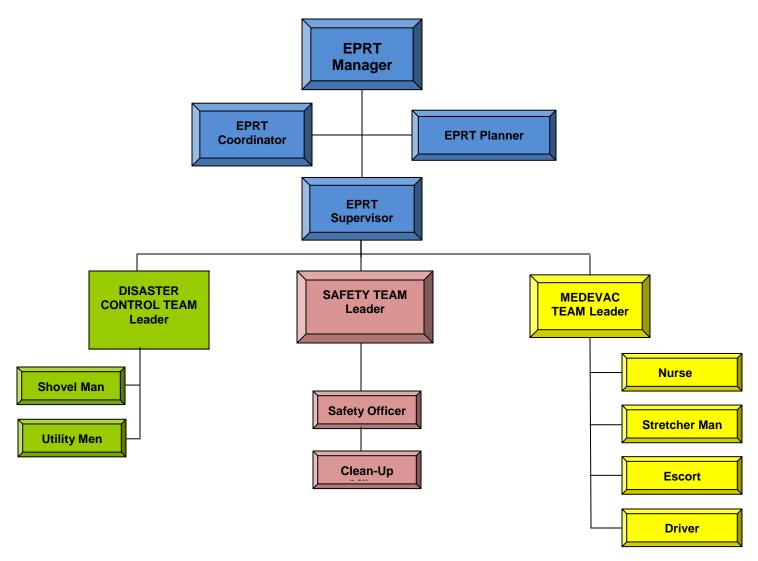


Figure 7.1 Emergency Preparedness and Response Team (EPRT) Organization Setup

Chapter 8 Institutional Plan for Implementation

8 INSTITUTIONAL PLAN FOR IMP IMPLEMENTATION

8.1 INSTITUTIONAL PLAN

Presented in **Figure 8.1-1** is the institutional setup that will be implemented during project implementation. As shown in the said figure, DPWH shall be the Implementing Agency for the CALA Expressway Project. The PMO-BOT Director shall supervise all technical aspects of the project.

PMO-BOT will be responsible for directing and supervising the (i) detailed engineering design of civil engineering works; (ii) preparation of tender documents and tender assistance; and (iii) construction activities. Included in Item (ii) is the updating of the Impact Management Plan (IMP) to reflect changes in configuration as well as construction methodologies based on developments brought about during Detailed Engineering Design. A **Senior Environmental Specialist** shall be assigned and be mainly responsible for: (1) monitoring the overall operation and effectiveness of the IMP during the construction and operational phases; (ii) updating of the IMP as the need arises; and (iii) preparing the Compliance Monitoring Report to be submitted to DENR-EMB;.

An **Environment Safety and Health (ESH) Officer** shall be assigned by the main **Contractor** during the construction phase. In coordination with the **Senior Environmental Specialist** of Construction Supervision Consultant, he shall be responsible for implementing the Impacts Management Plan (IMP) and the Environmental Monitoring Plan (EMP) presented in **Tables 4.1-1** and **6.1-1**, respectively of this report. Aside from the above-mentioned tasks, the main duties of the **ESH Officer** shall be to:

- (i) Ensure that all other concerned supervisors and staff understand and properly undertake their responsibilities;
- (ii) Ensure that environmental monitoring activities are being done promptly and in an accurate manner;

- (iii) Implement an effective preventive and corrective control system, particularly in terms of environmental emergency preparedness and response procedures;
- (iv) Conduct or initiate training of contractors (and sub-contractors, if any) on environmental awareness; and
- (iv) Collate performance data and prepare reports, which include an assessment of performance in comparison with the IMP objectives and targets, for submittal to the Construction Supervision Consultant's Senior Environmental Specialist. To ensure effectiveness of the IEC, he shall also act as a liaison between PMO-BOT, and the primary stakeholders, particularly the LGUs concerned, other government agencies, and more importantly, the affected barangays. This task is particularly important in terms of receiving comments, views, complaints (if any), and other concerns from the stakeholders mentioned.

The main Contractor shall also engage a **Safety Officer to** review and recommend amendments and updates to LRTA's circulars and bulletins pertaining to environmental safety, with special attention to the protection of human lives and properties against fire, and natural disasters such as typhoons, earthquake, and other calamities. In coordination with the ESH Officer, he shall also be in charge of posting environmental information and internal/external communications that pertain to environmental quality and safety.

Aside from these **two** (2) key staff, each Sub-Contractor shall be required to assign **Environmental Coordinators** to undertake site supervision and inspection, during the implementation of the Environmental Monitoring Plan, as well as in maintaining cleanliness and aesthetic appeal, at construction areas. Each shall be responsible for liaising with other government agencies with regards to licensing and securing permits, as required.

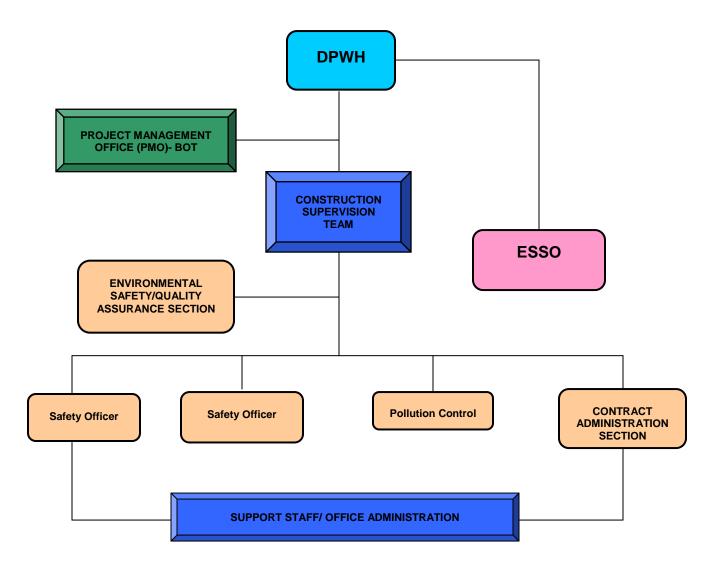


Figure 8.1-1 Institutional Plan - Organizational Structure of DPWH

Sworn Statements

SWORN STATEMENT OF ACCOUNTABILITY OF PREPARERS

This is to certify that all data or information in this **Environmental Impact Statement** (EIS) for the **CAVITE-LAGUNA Expressway** (CALAX) **Project** (Laguna Section) are accurate and complete to the best of our knowledge and information, and that an objective and thorough assessment of the Project was undertaken in accordance with the dictates of professional and reasonable judgment. Should we learn of any information which would make this **Environmental Impact Statement** (EIS) inaccurate, we shall immediately bring the said information to the attention of Department of Environmental and Natural Resources –Environmental Management Bureau (DENR-EMB).

We hereby certified that no DENR-EMB personnel was directly involve in the preparation of this <u>CAVITE-LAGUNA Expressway (CALAX)</u> Project other than to provide procedural and technical advice consistent with the guidelines in the DAO 03-30 Revised Procedural Manual.

We hereby bind ourselves jointly and solidarity to answer any penalty that may be imposed arising from any misrepresentation or failure to state material information in this **Environmental Impact Statement (EIS)**.

In witness whereof,	we hereby set our hands this	11	JUN	2012	day of	
at QUEZON CITY		-				

	Name	Field of Expertise	Signature
1	Annabelle N. Herrera	Team Leader, EIA Team	Annaledle Heur
2	Charlon Gonzales	Air Quality Specialist	(God)

SUB	SCRIB	ED AND SWORN	11 1 JUN 2012 day of		
20_	_, at _	QUEZON CITY		affiant exhibiting his/her-	
Com	munity	Tax Certificate in	ormation, as follows	S:	

		Community Tax Certificate/Passport Information			
	Name	CTC No./ Passport No.	Place of Issue	Date of Issue	
1	Annabelle N. Herrera	CTC No. 00021354	Quezon City City	January 20, 2012	
2	Charlon Gonzales	CTC No. 35294408	Valencia City Bukidnon	February 22, 2012	

Page No. 16

Book No. VII

Series of 1012

ATTY. DELFIN R. AGCAOJLI JR.

NOTARY PUBLIC
PTR 0285334 JAN. 4, 2012
UNTIL DEC. 31, 2012
IBP: 797299 - JAN. 10, 2012 MCA
ROLL # 24655-TIN # 44519966

MCLE: # 0013521