

State Level Environment Impact Assessment Authority-Karnataka

(Constituted by MoEF, Government of India, under section 3(3) of E(P) Act, 1986)

No SELAA 32 IND 2009

Date: 20-11-2014

l

To,

The Commissioner Bengaluru Development Authority T Chowdaiah Road, Kumarapark West Bengaluru - 560 020 Ph. No.: 080 2334 5799 E-mail: bda@vsnl.com

Sir,

Sub: Development of Eight Lane Peripheral Ring Road -Phase - I, connecting Tumkur Road to Hosur Road (crossing Bellary Road & Old Madras Road) of total 65 Kms by the Bengaluru Development Authority, Bengaluru - Issue of Environmental Clearance - Reg. * * * * ,

This has reference to your application No.BDA/EM/TA3/ PRR/EIA/T333/09-10 dated 10th September, 2009 address ed to the SEIAA seeking prior Environmental Clearance for the above project under the EIA Notification, 2006. The proposal has been appraised as per prescribed procedure in the light of the provisions under the EIA Notification, 2006 on the basis of the mandatory documents enclosed with the application viz., the Form 1, EMP and the additional clarifications furnished in response to the observations of the SEAC, Karnataka, in its meetings held on 21st November, 2009; 5th April, 2013; 9th June, 2014; 12th August, 2014 & 14th November, 2014. SEAC has recommended for issue of Environmental Clearance.

2. The proposal is for development of Eight Lane Peripheral Ring Road: Phase - I, connecting Tumkur Road to Hosur Road (crossing Bellary Road & Old Madras Road) of total 65 Kms.

3. The proposed project will have the provision for 69 box culverts and 4 Nos. of minor bridges for crossing of rajakaluve, nalas etc. The project authority have proposed 36 structures for major crossing of

4. The project proposal has been considered by SEAC and ToRs were issued on 18th December, 2009 for conducting Environment Impact Assessment Study with Public Hearing. The EIA has been conducted by EIA Consultant namely M/s. Ramky Enviro Engineers Limited (Consultancy

Room No. 706, 7th Floor, 4th Gate, M.S. Building, Bangalore - 560 001 Phone : 080-22032497 Fax: 080-22254377 e-mail: msseiaakarnataka@gmail.com. Wehsite : http://seiaa.kar.nic.in

State Level Environment Impact Assessment Authority-Karnataka (Constituted by MoEF, Government of India under section 3(3) of E(P) Act, 1986)

SEIAA 32 IND 2009

Development of 'Peripheral Ring Road' project by The Bengaluru Development Authority

Division), Rajbhavan Road, Somajiguda, Hyderabad, Andhra Pradesh – 500 082 and Public Hearing has been conducted by the Karnataka State Pollution Control Board, Bengaluru at Bilishivale Village, Bidarahalli Hobli, Bengaluru East Taluk, Bengaluru Urban District on 6th February, 2014.

5. The project proposal has been considered by SEIAA in its meeting held on 18th November, 2014 and the Environmental Clearance is hereby accorded to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:-

(A) Specific Conditions:

- 1. The Project Authorities shall construct 3 lane Service Road for the proposed Peripheral Ring Road on either side of the road which would be helpful to all the inhabitants of 65 villages and the access shall be toll free.
- 2. Adequate drainage facility should be provided to ensure that road is not flooded during any part of the year. The number of cross drainage works may be increased for free flow of water during floods as the alignment passes through micro drainage areas and flood passage areas.
- 3. Protecting walls should be constructed along the slopes to prevent the land slides.
- 4. Noise barriers shall be provided at appropriate locations particularly in the areas where the alignment passes through inhabited areas schools/hospitals, so as to ensure that the noise levels do not exceed the prescribed standards.
- 5. R&R shall be as per the norms laid down by the concerned agencies.
- 6. Large quantity of fill materials and blue metal are required for the construction of the road. The location and details of the quarries and borrow pits should be provided to the SEIAA, Karnataka within six months from the date of issue of this letter.
- 7. The Project Authorities should undertake social improvement measures by training some of the local communities for monitoring/implementing the environmental conditions along the road. The Bengaluru Development Authority, Bengaluru should take up construction of dispensaries and schools at required locations.
- 8. Footpath should be provided on both sides of the road shoulders for local communities.
- 9. Accident severity index to be taken into account and accordingly safety measures as per IRC to be included.
- 10. The Project Authority should undertake plantation along the road to be as per the guidelines laid down by IRC in lieu of the trees cut.
- 11. The Project Authority should set up facilities for harvesting rainwater. The details of the rainwater harvest system may be provided to this Authority within 3 months from the date of receipt of this letter.
- 12. Solid waste shall be used for filing the burrow areas and construction of the road. h

2

add

State Level Environment Impact Assessment Authority-Karnataka (Constituted by MoEF, Government of India under section 3(3) of E(P) Act, 1986)

SEIAA 32 IND 2009

Development of 'Peripheral Ring Road' project by The Bengaluru Development Authority

- 13. To prevent damage to the agricultural land, the drainage flow should be diverted to the natural course avoiding the agricultural land.
- 14. The road profile should be raised on the low lying structures to prevent15. Cross belts to prevent
- Green belt development may be undertaken as per the Environmental Management Plan.
 The Project of the International Statement Plan.
- 16. The Project Authority should obtain necessary permission from the competent authorities before drawing water for the purpose of the proposed construction activity. No groundwater should be drawn for the project, if this is essential, permission from the concerned Authority should be taken in this regard.
- 17. The Project Authorities shall use the tertiary treated water for development of road to the maximum extent possible as per G.O. No. FEE 188 ENV 2003 dated 14th August, 2003.
- The embankments/slopes and the slopes left after cutting will be provided with vegetative turfing to avoid soil erosion.
- 19. Detailed plan for use of fly ash in the project may be made and submitted to the Authority. In any case, fly ash utilisation as per provisions under Notification S.O. 763 (E) dated 14.9.1999 as amended vide S.O. 797 (E) dated 27.8.2003 must be adhered to.
- 20. Longitudinal drains should be provided all along the project road to ensure proper drainage of the area. In addition, adequate number of under passes and culverts to act as cross drainage structures should also be provided.
- 21. The hot mix plant should be located at least 500 mts away from habitation and on the barren land to avoid its adverse impact on the human population.
- 22. Necessary permission for tree felling from the concerned department should be obtained before commencement of the project work and copies of the same should be submitted to this Authority and the compensatory avenue plantation shall be undertaken at the rate of 200
 23. Bees
- 23. Recommendation of international conference for the restriction on the use of carcinogens in the process of road making, such as the Benzenes which are likely to cause Leukemia should be strictly complied with and the prescribed safety equipment should be provided to the labourers. Blood examination of labourers should be taken up in the beginning & repeated every 6 months.
- 24. Walk way should be provided for over bridges.
- 25. Awareness campaigns on road safety should be got done.
- 26. In critical areas, especially villages, under pass should be provided.
- 27. The Project Authorities shall use the forest land if any only after obtaining due clearance for diversion of forest land for non forest purposes from the competent authority following due procedure of law.
- 28. The Project Authorities shall address all the concerns expressed during the public hearing as committed and report be submitted.

SEIAA 32 IND 2009

Development of 'Peripheral Ring Road' project by The Bengaluru Development Authority

(B) General Conditions:

- Adequate provision for infrastructure facilities including water supply fuel and sanitation shall be ensured for construction workers during the construction phase of the project in order to avoid any damage to the environment.
 Appropriate measurement of the project in order to avoid any damage to the
- Appropriate measures shall be taken while undertaking digging activities to avoid any likely degradation of water quality.
- 3. Borrow sites for earth, quarry sites for road construction material and dump sites shall be identified keeping in view the following:
 - (a) No excavation or dumping on private property shall be carried out without written consent of the owner.
 (b) No excavation or dependent of the owner.
 - (b) No excavation or dumping shall be allowed on wetlands, forest areas or other ecologically valuable or sensitive locations.
 (c) Excavation and a last of the location of the loca
 - (c) Excavation work shall be done in consultation with the Soil Conservation and Watershed Development Agencies working in the area; and
 - (d) Construction spoils including bituminous material and other hazardous materials shall not be allowed to contaminate water courses and the dump sites for such materials must be secured so that they shall not leach into the ground water.
- 4. The construction material shall be obtained only from approved quarries. In case new quarries are to be opened, specific approvals from the competent authority shall be obtained in this regard.
 5. Adequate precautions also be a set of the set
- 5. Adequate precautions shall be taken during transportation of the construction material so that it does not affect the environment adversely.
 6. Borrow pits and other construction of the construction of the second second
- Borrow pits and other scars created during the road construction shall be properly levelled and treated.
 The project of the scars of the scars created during the road construction shall be
- 7. The project-affected people, if any, shall be adequately rehabilitated and the details in this regard shall be furnished to the Authority, there is resettlement involved.
- Adequate financial provision must be made in the project to implement the aforesaid safeguards.
 The Project Authority will
- The Project Authority will set up separate environmental management cell for effective implementation of the stipulated environmental safeguards under the supervision of a Senior Executive.
- 10. Full support shall be extended to the officers of SEIAA, Karnataka, the APCCF, Regional Office of MoEF at Bengaluru/KSPCB/CPCB/ Department of Ecology and Environment, Government of Karnataka, M.S. Building, Bangaloer 560 001 by the project proponents during their inspection of the project for monitoring purposes by furnishing full details and action plan including action taken reports in respect of mitigative measures and other environmental protection activities.
- 11. Half yearly monitoring report shall be submitted to the SEIAA and the APCCF, Regional Office, MoEF, Bengaluru regarding the implementation of the stipulated conditions

4

SEIAA 32 IND 2009 - 7

Development of 'Peripheral Ring Road' project by The Bengaluru Development Authority

- 12. The Authority may stipulate any other conditions or environmental safeguards, subsequently, if deemed necessary, which shall be complied with.
- 13. The Authority reserves the right to revoke this clearance if any of the conditions stipulated are not complied with to the satisfaction of the Authority.
- 14. In the event of a change in project profile or change in the implementation agency, a fresh reference shall be made to the Authority.
 15. The Project As the time of the time of the time.
- 15. The Project Authorities shall inform the SEIAA Karnataka, the APCCF, Regional Office of MoEF at Bengaluru /KSPCB/CPCB/Department of Ecology and Environment, Government of Karnataka, M.S. Building, Bangaloer-560 001/ the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.
- 16. A copy of the clearance letter shall be marked to concerned Panchayat/local NGO, if any, from whom any suggestion/representation has been received while processing the proposal.
- Karnataka State Pollution Control Board shall display a copy of the clearance letter at the Regional Office, District Industries Centre and Deputy Commissioners Office/Tehsildar's officer for 30 days.
- 19. The Project Authority shall inform the public that the project has been accorded Environmental Clearance by the SEIAA and copies of the clearance letter are available with the KSPCB and may also be seen at Website of the State Environment and Ecology department at http://seiaa.kar.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the APCCF, Regional Office of MoEF at Bengaluru/KSPCB/CPCB/Department of Ecology and Environment, Government of Karnataka, M.S. Building, Bangaloer 560 001.
- 20. Any appeal against this Environmental Clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.
- 21. These stipulations would be enforced among others under the provisions of Water (Prevention and Control of Pollution) Act. 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, the Public Liability (Insurance) Act, 1991 and EIA Notification 1994 including the amendments and rules made thereafter.
- 22. The Project Authorities shall display the conditions prominently at appropriate places of the project site on a suitable size board for the information of the public.

5

State Level Environment Impact Assessment Authority-Karnataka (Constituted by MoEF, Government of India under section 3(3) of E(P) Act, 1986)

SEIAA 32 IND 2009

Development of 'Peripheral Ring Road' project by The Bengaluru Development Authority

23. Concealing factual data or submission of false/fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environmental (Protection) Act, 1986.

Yours faithfully,

11/4, (RAMACHANDRA) Member Secretary, SEIAA, Karnataka

6

*. .

Copy to:

- 1. The Secretary, Ministry of Environment, Forests and Climate Change, Indira Paryavaran Bhavan, Jor Bagh Road, Aliganj, New Delhi – 110 003.
- 2. The Secretary, Department of Environment and Ecology, Government of Karnataka, Bengaluru.
- 3. The Member Secretary, Karnataka State Pollution Control Board, Bengaluru.
- The APCCF, Regional Office, Ministry of Environment & Forests (SZ), Kendriya Sadan, IVth Floor, E & F wings, 17th Main Road, Koramangala II Block, Bengaluru-560 034.
- 5. Guard File,

RAPID ENVIRONMENTAL IMPACT ASSESSMENT REPORT

(As per MoEF notification S.O.1533 dt.14th September 2006 for obtaining EC)

For Proposed Peripheral Ring Road project (PRR) by Bangalore Development Authority (BDA)

Submitted to SEAC, Department of Ecology and Environment M.S. Building, Bengaluru

Proponent

Bangalore Development Authority, T. Chowdaiah Road, Kumarapark west, Bangalore, Karnataka – 560 020

Prepared By

Ramky Enviro Engineers Limited. Hyderabad (QCI/NABET Approved - Certificate No. NABET/EIA/1013/016)

October, 2014

Terms of Reference (TOR)

By Speed Post

No. SEIAA 32 IND 2009 STATE LEVEL EXPERT APPRAISAL COMMITTEE, KARNATAKA

Department of Ecology and Environment M.S. Building, Bangalore Dated: 18th December 2009.

Kriller State

The Engineer Member, Bangalore Development Authority, T. Chowdaiah Road, Kumarapark West, Bangalore -560 020.

Sir,

To,

Sub: Development of eight lane peripheral ring road Phase I. The peripheral ring road is the connect Tumkur Road, Bellary Road, Old Madras Road & Hosur Road by Bangalore Development Authority - ToR reg.

A Kindly refer to your letter No. BDA/EM/TA-3/PRR/EIA/T-333 dated 10.09.2009 along with Form-I and proposed ToRs as per the EIA Notification, 2006.

2. The proposal is for development of eight lane peripheral ring road Phase I. The peripheral ring road is the connect Tumkur Road, Bellary Road, Old Madras Road & Hosur Road.

3. The State Expert Appraisal Committee, Karnataka considered the project during its 46th meeting held on 21.11.2009. Based on the consideration of the documents submitted and the presentation made by the project proponent, the Committee prescribed the following Terms of Reference (ToRs) for preparing EIA report for the above mentioned project:

1.0 Executive Summary

The EIA Report should start invariably with an Executive Summary giving a brief account of all the aspects dealt in the EIA study condensed to ten A-4 size pages at the maximum. It should necessarily cover and brief the following chapters of the full EIA report.

Background information

- Project Description
- Environmental Examination
- Environmental Risk Assessment (ERA) and Disaster Management Plan (DMP)
- Additional Studies
- Project Benefits
- Environmental Management Plan and Post Project Monitoring Program

2.0 Background Information

The chapter on back ground information should include the following aspects:

- Purpose of the project, goals and objectives of the proposed project, Significance of the project both at local and national level
- Relevance of the project in light of the existing development plans of the region
- Background information and overall scenario of the Proposed Activity in the Indian Context
- Profile of the Project Proponent, name and contact address, Implementing Organization, Organizational Chart, project consultants etc.,
- Project coverage, master plan, phasing and scope
- Estimated cost of development of the project, environmental cost, funding agencies, whether governmental or on the basis of BOT etc,
- Resources, manpower, time frame etc., required for project implementation
- Procedures and criteria adopted for selection of the site, alternative sites considered, if any, details of land acquisition involved, rehabilitation of villages/communities if any, proposed methods there of etc.,
- Description of existing National and International Environmental Laws/ Regulations on the proposed Activity with Annexure giving references of such Acts. Overall suitability of the site and the proposed activity in light of the existing Environmental Acts and serious deviations, if any
- Details of regulatory clearances and their status. Any litigation pending against the project proposed site and/ or any direction/ order passed by any court of law against the project, if so, details thereof
- In case of expansion/ modernization of the project, the environmental compliance status for the existing project shall be explained

3.0 Project Description

This chapter shall contain the broader details of the need of the project, basic activities, location, alignment and alternatives examined, implementation schedule. Following are some of the details considered relevant.

- Road alignment plan with the help of satellite imagery (NRSA) of project area of 1:50,000 scale, and surrounding area covering 10 KM radial distance, from project boundary showing the details: (i) Protected Areas notified under the Wild Life (Protection) Act, 1972, (ii) Critically polluted areas as notified by the Central Pollution Control Board from time to time, (iii) Notified Eco-sensitive areas, (iv) Inter-state boundaries.
- Location map on a standard zoning atlas, GIS / Satellite imagery map, site layout and boundary of the project With Latitude and Longitude and survey of India map number village, Taluk, District and State, Elevation above mean sea level - min. and max
- Total area proposed for the project, Nature of terrain (plain, rolling, hilly), details of villages, taluk, districts, latitude and longitude for important locations
- Requirement of natural resources and their sources
- Technologies involved for design, construction, equipment and operation
- Details of land with all the Survey numbers.
- Justification of the project with reference to the Environmental sustainability.
- ... Updated spatial map indication number of village/tank coming in the project area.

Site Preparation

- If the proposed route is passing through low lying areas, details of fill materials and initial and final levels after filling above MSL
- If the proposed route involves stripping, the details of the area to be stripped, locations, volume and quantity of earth to be removed, type of soil and proposal for utilization of removed top soil with location of dump site to be provided
- If the proposed route involves cutting of earth, the details of area to be cut, depth of cut, locations, soil type, volume and quantity of earth and other materials to be removed with location of dump site to be provided
- If the proposed route involves tunneling, the details of the tunnel and locations of tunneling with geological structural fraction should be provided
 - If the proposed route requires cutting of trees, then the information should be provided for number of trees to be cut, their species and whether it also involved any protected or endangered species

4.0 Environmental Examination

This Chapter on environmental examination should include:

- Description of Baseline conditions
- Analysis of potential environmental impacts

- Consideration of alternatives
- Assessment of impacts for different compounds in the environment
- Impacts during different stages of the project
- Development of mitigate measures

Details of the study area both with reference to the boundaries of the area of activity and boundaries of the area to be affected by the proposed activity. In general baseline data of different parameters viz Land, Air Quality, Water, Noise, biological will be collected up to 2 KM from the either side of the center of the site of the proposed project, however these specifications may vary depending upon ecological conditions of the land area around the alignment of the road.

4.1 Land Environment

4.1.1 Baseline

- Data of the proposed land and its availability is to be ascertained from local authorities, revenue records etc. Details of the alternatives considered. Justification of the proposed quantum of the area and alignment
- Description of the existing situation of the land along the alignment. Study of the land use pattern, habitation, cropping pattern, forest area, environmentally sensitive places, notified industrial areas, sand dunes, nature of the terrain (plain, rolling, hilly), river, lake etc. by employing remote sensing techniques (if available) and ground truthing and also through secondary data sources
- Details of villages, survey numbers of the area elevation above mean sea level & latitude and longitude of important locations
- Road factors:(i) Land width available, (ii) Geometrics Curvature, Gradient, and pavement width etc.(iii) structural condition of road and road structures
- Traffic factors: (I) traffic volume-vehicles per day, (ii) traffic composition (iii) average speed of travel, (iv) time delays at railway crossings, (v) presence of road intersection - nos./km, (vi) access control, (vii) accidents - fatal and injury accidents per year
- Geology: rock types, history of any volcanic activity, seismicity and associated hazards
- Study about the trend of change in land use pattern, if any, with reasons thereof for the last 10 years based on remote sensing technique data and it's extrapolation to next ten years with and without the proposed project

- Soil soil cover and condition, physical and chemical properties
- Mobility with respect to land use and land use change.

4.1.2 Anticipated Impacts

- The road itself land consumption, removal of vegetation, fragmentation of natural habitat, removal of buildings and severance of form land causes, direct impacts. The most immediate and obvious effect of road development on soil is the elimination of the productive capacity of soil covered by the roads
- Impact of the project construction leading to soil erosion, destabilization
 of slopes, side- tipping of spoils material, loss of properties, loss of fertile
 lands and diversion of natural surface water flows are to be studied in
 detail

4.1.3 Mitigation Measures

- The extent of environmental impacts in construction, operation and post operation is largely determined during planning and route or site selection. Early consultation and determination of alternatives can substantially reduce the potential environmental impacts of these projects
- While selecting new road alignments attention must be paid to avoid areas prone to land slides, soil erosion, fertile agricultural lands, environmental sensitive areas and other damaging features
- Before finalizing the alignment erosion potential of each alternative should be carefully examined and the one involving least disturbance to the natural ground should be preferred
- Balancing filling and cutting requirements through alignment choice to reduce the need for borrow pits and to minimize excess spoil material generation is to be examined
- Drainage improvement requirements to minimize water logging and flooding due to disturbance of the natural drainage pattern are to be examined
- Afforestation plan to compensate for the cutting of the trees during the proposed road construction activity
- Integration with the local area master plans

4.2. Air Environment

Activities during the construction and the vehicular emissions are likely sources of air emissions. In addition, release of hazardous gases due to explosions/leak from the hazardous chemicals carrying transport trucks on the near by habitation is a matter of concern even though they may be categorized as low probability risk

4.2.1 Base Line

- Ambient air quality needs to be assessed at all sensitive locations along the alignment of the project to determine if it falls under the National ambient air quality standards as notified by MoEF. Monitoring of the parameters -SPM, RSPM, Sulphur dioxide, oxides of nitrogen as NO_2 , lead, hydrocarbons & carbon monoxide are essential. Care shall be taken while selecting the monitoring locations in order to reflect the ambient air quality such as near by residential area, notified sanctuaries etc
- Estimation of present traffic volume, traffic composition, speed of traffic, different fuel consumption by the vehicles, composition of the fuel and the air emissions on burning of the fuel and for the projected traffic flows
- Annual rainfall, snowfall, maximum and minimum temperatures, wind speed and direction. Frequency of tropical cyclones and associated hazards
- ... The air quality at the toll plaza.

4.2.2 Anticipated Impacts

- Anticipated impacts during the construction stage and operation stage should be predicted. The immediate surroundings may have a greater impact. The existing surrounding features such as habitation, hospitals, schools, no ified sanctuaries etc. up to 1 Km and impact on them shall be addressed separately
- Impact during construction activities due generation of fugitive dust from crusher units, and air emissions from hot mix plants and vehicles used for transportation of materials
- · Impact of the functional air pollution

4.2.3 Mitigation Measures

Mitigative measures are to be proposed during the construction stage as well as the operation stage of the project for all the identified impacts. Some measures to be listed include:

- Selecting road alignment, which avoids passing close to housing, schools and work places; providing sufficient capacity to avoid traffic congestion, even with projected increase in traffic flow
- Planting tail leafy and dense vegetation between roads and human settlements o filter pollutants
- Water sprinkling and transporting construction materials with tarpaulin coverage during the construction stage. Purchasing road metal from the crushing units, which are complaining SPCB norms

- Integration with the local government awareness campaign programmes on good practices of vehicle maintenance etc. to reduce the air emissions discharge
- Environmental specifications for contractors should cover the required safeguards during the design and construction stage

4.3. Water Environment

4.3.1. Base line

- Determine the sensitivity of the study zone and identify the main potential impacts, working from basic data on the drainage basin, nature and frequency of flooding, water quality, water use, fauna species and habitats. Assess likely modification of baseline conditions arising from the project.
- Details of lakes, reservoirs with in 2 km of radius of the proposed road site.
- Fix-up the ocations of representative monitoring stations along the proposed project road for surface and ground water resources and document them.
- Samples shculd be collected for both surface and ground water and examined for physico-chemical, heavy metal and bacteriological
 - parameters.
- Delineation of water sheds and water drainage pattern in the study area using remote satellite imageries

4.3.2. Anticipated Impacts

- Impact on surface water flow modification
- Impact on ground water table modification
- Impact on water quality degradation (surface & ground water)
- Impact due to discharge of wastewater generation from the temporary project offices.
- Impact on hydrological characteristics of the project area.

4.3.3. Mitigation Me isures

an ice Manazina

Notice and the spectrum

Mitigative measures are to be proposed during the construction stage as well as the operation stage of the project for all the identified impacts. Some measures to be listed include:

- Avoiding a ignments which are susceptible to erosion, such as those crossing steep slopes
- Minimizing the number of water crossings wherever possible

• Leaving tuffer zones of undisturbed vegetation (with increased in proportion to slope) between road sites and bodies of water

1.4.5 183

- Mitigative measures such as providing adequate drainage modifications, settling basins, paving, infiltration ditches etc. is to be examined
- Environmental specifications for contractors should cover the required safeguards during the design and construction stage
- Adequate canitation facilities and hygiene at construction workers colony should be provided
- Proper Lar dscaping on either side of the road shall help to avoid water logging and surface runoffs
- Environmental specifications for contractors should cover the required safeguards during the design and construction stage

4.4. Noise Environment

 Identify project activities during construction and operation phases, which will affect the noise levels and the potential for increased noise resulting from this project. Discuss the effect of noise levels on near by habitation during the construction and operational phases of the project. Identify noise reduction measures and traffic management strategies

4.4.1. Base line

• Select the .ocations of monitoring stations along the alignment of the project covering sensitive locations such as residential, hospitals, schools, sanctuaries etc. Monitoring should be done for 24 hrs at each location

4.4.2. Anticipated Impacts

- Noise level: may increase during construction activity, due to operation of various machines and equipments
- Noise levels may increase during operation of the proposed project due to increased activities. Prediction of noise levels should be done by using mathematical modeling at different representative monitoring stations
- Impact of v: brations during blasting activity, if any

4.4.3. Mitigation Measures

Mitigative measures are to be proposed during the construction stage as well as the operation stage of the project for all the identified impacts. Some measures to be listed include:

 Development of bypass roads to avoid road alignment through noise sensitive areas

Adoption of proper surface design and maintenance

- Provision of noise barriers. Specifications for building noise protection devices clearly indicating the location, design and material, and should account for future road maintenance requirements
- Environmental specifications for contractors should cover the required safeguards during the design and construction stage
- Planting tall 1:afy and dense vegetation between roads and noise sensitive areas
- Integration with the local government and vehicular manufacturers to conduct away eness campaign programmes on good practices of vehicle maintenance etc. to reduce the noise emissions

4.5. Biological Environment

• Conduct an inventory, map and describe the existing terrestrial, wetland and aquatic vegetation. Include any rare vascular and non-vascular plant species and rare plant communities in the study areas. Describe and assess potential impacts of the project construction and operation on vegetation (abundance, diversity, health, rare species and rare plant communities) in the study areas. Describe and discuss measures to be implemented to mitigate and monitor potential impacts of the project

4.5.1 Base line

- Assessment of plant species with respect to dominance, density, frequency, abundance, density index, importance value index.
- Quantitative estimation of forest and non-forest flora
- Assessment cf fauna and avid- fauna indicating endangered and endemic species with respect to schedule of the wild life protection act
- Location of rational parks, sanctuary and wildlife migratory routes with in 15 km radius of proposed project
- Information on dependence of local people on minor forest products
- Photographs showing the vegetation in the area
- Biodiversity- terrestrial and aquatic

4.5.2 Anticipated In pacts

Pratagramine dan Nakirang ber

4.5.2 Same Constant Spices

- A road project may have impacts on the ecology of the area directly or indirectly by causing
- Loss of wildlife habitat and biodiversity due to change in land use
- Fragmentation of wildlife habitat and territories
- Changes in water quality, soil profile, noise, light and air pollution, which may affect the nature and character of habitats

- Pressure on habitats wildlife as a result of increased access provided by roads
- Loss of forest resources, economically important plants, medicinal plants and threat to rare, endemic and endangered species

4.5.3 Mitigation Mersures

Mitigative measures are to be proposed during the construction stage as well as the operation stage of the project for all the identified impacts. Some measures to be listed include:

- Identification of sensitive natural environments in the early planning stage so that alternative routes, changes in width of the road can be examined
- Possibility of twin new road corridors with previously established transport rights-of-way, such as railway lines
- Provision of animal crossings in identified areas

chill man with

- Compensate the loss of forest coverage by appropriate plantation programme
- Development of green belt along the alignment
- Regeneration of rare plants of economic importance including medicinal plants and wildlife species
- Conservation plan for conservation and protection of flora and fauna, wildlife migratory species and medicinal plants
- Institutional arrangements for implementation and monitoring of various
- mitigating r easures

- ⁹ Environmen al specifications for contractors should cover management of work forces (control of poaching and fire wood collection), machinery
- (speed, noise, and traffic), and prevention of erosion and contamination during construction

4.6. Socio Economi: And Health Environment

 Proper planning calls for recognition that road projects can lead to modifications in the community environment surrounding the road, influencing various aspects of lifestyles, travel patterns and socio as well as economic activities.

4.6.1 Baseline

. . . .

- Details of the properties, houses, businesses etc. activities likely to be effected by land acquisition and their financial loses annually. Applicable R & R rules and regulations
- Data on notified settlements and applicable legislations, if any

- Identification and prioritization of historical and archeological sites
- Accident data and diseases in the locality and existing health care facilities
- Data on demography including traditional skills and sources of livelihood along the proposed site
- Data relating to historically, culturally, archeologically and ecologically important places in the study area
- Socio-econom c profile of the people on both sides of the boundaries of the proposed site

4.6.2 Anticipated Impacts

- Analysis of positive and negative impacts on the present status of livelihood
- Displacement of human settlement from proposed site. Impact on livelihood and loss of properties
- Impact on conmunity resources
- Impact on historical and archeological sites
- Impact on the existing travel parts due to faster traffic, access controls and median barries
- Increase in road accidents …
- Impact due to the gentrification effect
- Impact due to accelerated urbanization

4.6.3 Mitigation Measures

1 . H .

- Rehabilitation plan for land outees, homestead outees, and for displaced persons. Institutional arrangement for effective implementation be assessed, if necessary, strengthened
- · Criteria and method of Calculation of compensation for loss of land and
- crops. Proper counseling for guiding systematic financial planning with the compensation package
- Training to local people for employing them in the proposed project
- Employment opportunity and access to other amenities such as primary education and health care facilities for local people
- Integration with the local master plan for the accelerated urbanization
- Road safety management plan, especially the road passes through the developed area
- Institutional arrangements for road safety and to deal the road accidents are assessed, if necessary, strengthened
- Stipulation of environmental specifications for contractors

Contraction and the second

4.7. Solid Waste Di posal

 Waste generated during construction may impact soil, agriculture and water quality.

- 生態

230

- Waste generated from workers' camps may impact surface and ground water quality and agriculture.
- Oil spillage / leakage from machines and vehicles may contaminate earth
- Proper environmental specifications to be stipulated in the contacts.

200 13

Peters all de l

erste han

5.0. Additional Studies

Potter Contraction

nnach gy faar yn Graad gole stan e Arfite fy mei Soer r Thaariste staf fr

- Feasibility of utilizing construction materials such as fly ash to comply fly ash notification issued under EP Act, 1986
- Specific studies requirement depending up on the site and activity proposed shall be discussed
- Public consultation (during EIA as well as public hearing) with the issues raised by the public and the response of the project proponent in the tabular form

6.0. Environment Management Plan (EMP) & Post Project Monitoring Programme

- Administrative and technical set up for the management of environment
- Summary matrix of EMP and costing of EMP, during construction and operation stage
- Summary matrix of Environmental monitoring, during construction and operation stage
- Institutional arrangements proposed with other organizations/Govt. authorities for effective implementation of environmental measures proposed in the EIA
- Safeguards/mechanism to continue the assumptions/field conditions made in the EIA, for arriving the site suitability
- Specific Social Commitment plan with name of the place/work, budget allocation and time frame.

The ToRs prescribed by the State Expert Appraisal Committee, Karnataka should be considered for the preparation of EIA / EMP report for the above mentioned project in addition to all the relevant information as per the Generic Structure of EIA given in Appendix III and IIIA in the EIA Notification, 2006. On finalization of EIA/ EMP prepared as per ToRs and addressing and incorporating all concerns raised cluring public hearing / public consultation, the same should be submitted to the BEAC for prior environmental clearance.

Yours faithfully . Selv umar, L.F.S) cretary, SEAC.

Copy to:-

CEREFARM

marine/estimates stippland paring perticipation, 2005.

Our Chile,

use, Derfieldu. Picciany, Machatalo Throad an it En

Theres

T. The Secretary, Department of Ecology and Environment, Govt. of Chairman, Karnataka State Pollution Control Board, KSPCB, Parisar

Bhavan, 4th & 5th Floor, church street it is requested that the public hearing/consultation of the above project may be conducted within stipulated period in accordance to the procedure laid in the EIA 3. Guard File.

Terms of Reference (TOR) Compliance

Terms of Reference (TOR) Compliance as per State Level Expert Appraisal Committee Karnataka, No. SEIAA 32 IND 2009

TOR Point No.	Description of Terms of Reference	Compliance Status
2.0	 Executive Summary Background information Project Description Environmental Examination Environmental Risk Assessment (ERA) and Disaster Management Plan (DMP) Additional Studies Project Benefits Environmental Management Plan and Post Project Monitoring Program Purpose of the project, goals and objectives of the project both at local and national level. 	The Executive Summary containing background information, project description, environmental examination, additional studies, project benefits, environmental management plan is given in beginning of the report.
	Relevance of the project in light of the existing development plans of the region.	Road (PRR)". The proposed PRR is going to circumnavigate the city linking the major highways – Tumkur, Mysore, Old Madras, Hosur and district roads, thereby creating a direct corridor passage round the city. Most of the intra-city heavy trucks would prefer this corridor instead of the Outer Ring Road (ORR).

Background information and overall scenario of the proposed activity in the Indian Context	The Bangalore Development Authority (BDA) has proposed to develop an 8 Lane Peripheral Ring Road (Phase - I). The project envisages formation of 65 km long Peripheral Ring Road (PRR) consisting of 8 lanes starting from Tumkur (Chainage 0.0 km) Road and ending at Hosur Road (Near Begur at Chainage 64.65 km) connecting Balavakere, Hesarghatta, Yelahanka, Bettahalasuru, Thanisandra, Bhagaluru, Avalahalli, Sadaramangala, Whitefield, Varthur, Dhommasndra and Electronic City.
 Profile of the Project Proponent, name and contact address, Implementing Organization, Organizational Chart, project consultants etc., Estimated cost of development of the project, environmental cost, funding agencies whether governmental or on 	Bangalore Development Authority, T. Chowdaiah Road, Kumarapark west, Bangalore, Karnataka – 560 020 Total cost of the project is Rs. 930 crores and Chapter 10 ; Section 10.3 describes the environmental cost of the
the basis of BOT etc,	project. It is a governmental project proposed by Bangalore Development Authority.
Resources, manpower, time frame etc., required for project implementation	Chapter 2, Section 2.6 to 2.9 describes about the resources and the manpower required during the construction phase for project implementation.
Procedures and criteria adopted for selection of the site, alternative sites considered, if any, details of land acquisition involved, rehabilitation of Villages/communities if any, proposed methods there of etc.,	Chapter 2, Section 2.2 describes the terrain and topography of the alignment, Tables 2.2, 2.2a & 2.2b describes the land acquisition involved, rehabilitation of Villages/communities.

	Description of existing National and International Environmental Laws/ Regulations on the proposed Activity with Annexure giving references of such Acts. Overall suitability of the site and the proposed activity in light of the existing Environmental Acts and serious deviations, if any. Details of regulatory clearances and	Chapter 1, Section 1.10 describes all the applicable environmental regulations relevant to this project. Chapter 1, Section 1.10 presents a
	their status. Any litigation pending against the project proposed site and/ or any direction / order passed by any court of law against the project, if so, details thereof	table with all the Environmental Permits / Approvals required for the project.
	In case of expansion/ modernization of the project, the environmental compliance status for the existing project shall be explained	Not applicable
3.0	Project Description Road alignment plan with the help of satellite imagery (NRSA) of project area of 1:50,000 scale, and surrounding area covering 10 KM radial distance, from project boundary showing the details: (i) Protected Areas notified under the Wild Life (Protection) Act, 1972 (ii) Critically polluted areas as notified by Central Pollution Control Board from time to time, (iii) Notified Eco-sensitive areas, (iv) Inter-state boundaries.	The road alignment plan with the help of satellite imagery (NRSA) of project area and 10km buffer is given in Chapter 7, Figure 7.1, There are no Protected Areas notified under the Wild Life (Protection) Act, 1972, Critically polluted areas as notified by Central Pollution Control Board from time to time, Notified Eco-sensitive areas, Inter-state boundaries. There is an forest area (Jarakabande kaval, Yelahanka village (763m length) in survey no 59.
	Location map on a standard zoning atlas, GIS / Satellite imagery map, site layout and boundary of the project with Latitude and Longitude and survey of India map number village, Taluk, District and State, Elevation above mean sea level – min. and max	The location map of the project area is given in Chapter 2 , Figure 2.2 Longitude 77 ⁰ 35' up to 77 ⁰ 40' East and Latitude 12 ⁰ 58' up to 12 ⁰ 50' North. PRR start - Tumkur Road at CH.Km 0.00 on NH4 & terminates at Hosur road near Begur CH.64.65 Km (65 Km)

Total area proposed for the project, Nature of terrain (plain, rolling, hilly), details of villages, taluk, districts, latitude and longitude for important locationsRequirement of natural resources and their sourcesTechnologies involve for design,	 Chapter 2, Section 2.2 describes the terrain and topography of the project area. Table 2.2 describes the details of all the villages / settlements / habitations from which the PRR is passing through. Chapter 2, Section 2.6 - 2.9 describes the resources requirement. Chapter 2, Section 2.5 describes the
construction, equipment and operation	design considerations of the project.
Details of land with all the Survey numbers Justification of the project with reference to the Environmental sustainability Updated spatial map indication number of village/tank coming in the project area.	Chapter 2, Table 2.3 describes about the salient features of the PRR. The development of the proposed project will decongest the traffic on existing roads, reduces the pollution intensity, and saves time of travel, usage of fuel. The details of all the villages / settlements / habitations from which the PRR is passing through is given in Chapter 3, Table 2.3, the landuse and land cover map is given in Chapter 7, Figure 7.2.
Site preparation: If the proposed route is passing through low lying areas, details of fill materials and initial and final levels after filling above MSL.	In 65 km length of the proposed project around 69 cross drainage structures are provided, and the fill material
If the proposed route involves stripping, the details of the area to be stripped, locations, volume and quantity of earth to be removed, type of soil and proposal for utilization of removed top soil with location of dumpsite to be provided If the proposed route involves cutting of earth, the details of area to be cut,	The proposed project route is nearly flat with few undulations. Based on site observations, approximately 50-60% of the land requires grading. The road formation level will be so decided to optimally balance the cutting and filling of the earth. Based on the topographic survey, plateau / terrace concept of site grading would be used to reduce the

	depth of cut, locations, soil type, volume and quantity of earth and other materials to be removed with location of dumpsite to be provided If the proposed route involves tunneling, the details of the tunnel and locations of tunneling with geological structural fraction should be provided If the proposed route requires cutting of trees, then the information should be provided for number of trees to be cut, their species and whether it also involved any protected or endangered species	requirement of earth getting from nearby sources. The proposed route does not involve any tunneling. The summary of the trees in the proposed route which requires to be cut are given in Chapter 2, Table 2.2(C) .
4.0	 Environmental Examination Description of Baseline conditions Analysis of potential environmental impacts Consideration of alternatives Assessment of impacts for different compounds in the environment Impacts during different stages of the project Development of mitigate measures 4.1 Land Environment 	Baseline environmental conditions in and around the proposed project are given in Chapter 3 under sections 3.3 to 3.8 . No alternatives were considered for this project. Assessment of impacts during different states of project and mitigate measures were described in Chapter 4 under sections 4.1 to 4.10 .
	 Data of the proposed land and its availability is to be ascertained from local authorities, revenue records etc. Details of the alternatives considered. Justification of the proposed quantum of the area and alignment Description of the existing situation of the land along the 	Details of the proposed land and its availability are described in Chapter 2 under sections 2.3.1 to 2.3.3 . Land use/ land cover details up to 10km buffer zone on either side of the

	alignment. Study of the land use pattern, habitation, cropping pattern, forest area, environmentally sensitive places, notified industrial area, sand dunes, nature of the terrain (plain, rolling, hilly), river, lake etc. by employing remote sensing techniques (if available) and ground truthing	proposed road had been discussed in Chapter 7 under Sections 7.2.3.1 to 7.2.3.6 and Figure 7.2 Table 7.1 Land Use / Land Cover Statistics of 10km buffer zone. The pie diagrams of 10km buffer zone and 2km buffer zone are shown in Figure 7.3 & 7.4.
•	and also through secondary data sources Details of villages, survey numbers of the area elevation above mean sea level & latitude and longitude of important locations Road factors: (i) Land width available, (ii) Geometrics – Curvature, Gradient, and	Details of villages are described in Chapter 2 under Tables 2.1 & 2.2 and Salient features of Peripheral Ring Road are described in Table 2.3. Details of design consideration are described in Chapter 2 under Section 2.5.
•	pavement width etc. (iii) structural condition of road and road structures Traffic factors: (i) traffic volume – vehicles per day, (ii) traffic composition, (iii) average speed of travel, (iv) time delays at railway crossings, (v) presence of road intersection –	Proposed peripheral ring road (phase 1) to circumnavigate the Bangalore city by connecting 4 National highways, 6 State highways having 5 railway crossings.
•	no's / km, (vi) access control, (vii) accidents – fatal and injury accidents per year Geology : rock types, history of any volcanic activity, seismicity and associated hazards Study about the trend of change in land use pattern, if any, with reasons thereof for the last 10 years based on	The Bangalore district and the surrounding areas which fall within the project area are entirely underlain by Precambrain granite and gneiss of the Indian Precambrain Shield and which are part of the Peninsular granite complex. Migmatite and gneiss are dominant, minor areas of chamokite occur in the far south western part of

•	remote sensing technique data and it's extrapolation to next ten years with and without the proposed project Soil – soil cover and condition, physical and chemical properties Mobility with respect to land use and land use change.	the district, and there are some small elongated bodies of amphibolite and schist aligned along a north south trend through the central part. As per BIS Seismic hazard map of 2000, the Bangalore city lie in Zone II (Annexure 1). Soil conditions were described in Chapter 3 under Section 3.9 and Table 3.14 describes the Soil properties.
•	The road itself – land consumption, removal of vegetation, fragmentation of natural habitat, removal of buildings and severance of form land causes, direct impacts. The most immediate and obvious effect of road development on soil is the elimination of the productive capacity of soil covered by the roads Impact of the project construction leading to soil erosion, destabilization of slopes, side-tipping of spoils material, loss of properties, loss of fertile lands and diversion of natural surface water flows are to be studied in detail	
4.1.3	Mitigation Measures The extent of environmental impacts in construction, operation and post operation is largely determined during planning and route or site	Two corridors were selected for alternative studies and the best one was ultimately chosen considering adequate care for the requisite factors like terrain conditions, general

selection. Early consultation and determination of alternatives can substantially reduce the potential environmental impacts of these projects

- While selecting new road alignments attention must be paid to avoid areas prone to land slide, soil erosion, fertile agricultural lands, environmental sensitive areas and other damaging features
- Before finalizing the alignment erosion potential of each alternative should be carefully examined and the one involving least disturbance to the natural ground should be preferred
- Balancing filling and cutting requirements through alignment choice to reduce the need for borrow pits and to minimize excess spoil material generation is to be examined
- Drainage improvement requirements to minimize water logging and flooding due to disturbance of the natural drainage pattern are to be examined
- Afforestation plan to compensate for the cutting of the trees during the proposed road construction activity
- Integration with the local area master plans

hydrological conditions, geographical aspects, land use / land cover pattern, environmental issues, etc by keeping the following considerations.

- To keep the road short, safe with regards to maneuverability.
- To avoid obligatory land use like dense settlement, industrial and religious area.
- To optimally utilize existing major roads.
- To follow topography and to avoid steep, uneven terrain.
- To keep no. of curves, drains, cutting / filling at minimum.
- To safeguard potential agriculture, plantation and forest area.
- To suit further development

The road formation level will be so decided to optimally balance the cutting and filling of the earth. Based on the topographic survey, plateau / terrace concept of site grading would be used to reduce the requirement of earth getting from nearby sources

To minimize water logging and flooding and maintain natural drainage, cross drainage structures are provided at 69 locations.

Afforestation plan will taken along the road corridor by planting trees, and minimum of three plants will be planted against each plant uprooted along the path of the road

Impacts and mitigation measures on environment during construction and operational phase are given in **Chapter 4**.

4.2 Air Environment

4.2.1 Baseline

- Ambient air quality needs to be assessed at all sensitive locations along the alignment of the project to determine if it falls under the National ambient air quality standards notified MoEF. as by Monitoring of the parameters – SPM, RSPM, Sulphur dioxide, oxides of nitrogen as NO₂, lead, hydrocarbons & carbon monoxide are essential. Care shall be taken while selecting the monitoring locations in order to reflect the ambient air quality such nearby as notified residential area. sanctuaries etc
- Estimation of present traffic volume, traffic composition, speed of traffic, different fuel consumption by the vehicles, composition of the fuel and the air emissions on burning of the fuel and for the projected traffic flows

Ambient Air Quality Monitoring (AAQM) stations were set up at ten locations as indicated in **Table 3.5** and a summary of monitoring parameters for each location is presented in **Table 3.6**.

The estimated traffic on the proposed Peripheral Ring Road (PRR) from the existing arterial roads is given in Chapter 4 Table 4.4. Due to growth oriented policies of Government, there is significant economic growth and the impact on road traffic on National Highways is of the order 10 to 12% each year, while on State Highways, it is 12 to 15%. The general assumption of 7.5% in traffic growth, city's roads need widening, strengthening to match the current and future traffic demands. besides, new roads are to be built to improve accessibility, reduce travel time and decongest the existing roads. The air emissions for the projected traffic flow considering 5% growth in the traffic in a decade (as most of the traffic gets diverted to proposed project) are presented in Tables 4.5 and 4.6 respectively.

Metrological conditions are described in

	Chapter 3 under sections 3.3 & 3.4. Wind data is presented in Tables 3.1 to
 Annual rainfall, snow maximum and minin temperatures, wind speed 	fall, 3.4.
direction. Frequency of trop cyclones and associa hazards	ated given in Chapter 3, Table 3.6.
The air quality at the toll pla	za.
 4.2.2 Anticipated Impacts Anticipated impacts during construction stage operation stage should 	the The major impacts due to proposed and project on Air Environment are due to be the particulate matter on the immediate
predicted. The immed surroundings may have greater impact. The exis surrounding features such habitation, hospitals, scho notified sanctuaries etc. up	 a surrounding during construction phase, the impacts will be on existing habitations, they are discussed in Chapter 4 under section 4.7.
 Km and impact on them sha addressed separately Impact during construct activities due generation fugitive dust from crusher us and air emissions from hot plants and vehicles used transportation of materials Impact of the functional pollution 	I be Necessary air pollution control measures will be taken up to minimize the impacts from crusher and hot mix plants.
4.2.3 Mitigation Measures	
places; providing suffic	to sections where the alignment passes work through sensitive areas such as schools, hospitals and urban areas. As soon as affic construction is over the surplus earth

		covered
•	Planting tall leafy and dense vegetation between roads and human settlements to filter pollutants	covered. Plantation will be taken up by planting tall leafy and dense vegetation between roads and human settlements to filter pollutants as suggested by CPCB (Annexure 2). Sprinkling of water will be carried out
•	Water sprinkling and transporting construction materials with tarpaulin coverage during the construction stage. Purchasing road metal from the crushing units, which are complaining SPCB norms	twice a day on a regular basis during the entire construction period; all vehicles carrying construction material will be instructed to use tarpaulin cover to minimize the dust pollution. All vehicle carrying construction material will be asked to carry pollution under
•	Integration with the local government awareness campaign programmes on good practices of vehicle maintenance etc. to reduce the air emissions discharge	control certificate for vehicle, regular awareness programs will be organized under CSR activities on good practices of vehicle maintenance, etc., All contractors engaged will be briefed in the starting about existing environmental guidelines and the rules and regulations to be followed to meet the guidelines.
• 4.3 W	Environment specifications for contractors should cover the required safeguards during the design and construction stage /ater Environment	
4.3.1	Baseline	
	Determine the sensitivity of the study zone and identify the main potential impacts, working from basic data on the drainage basin, nature and frequency of flooding, water quality, water use, fauna species and habitats. Assess likely modification of baseline conditions arising from the project. Details of lakes, reservoirs	 Chapter 3, a section 3.7 & 3.8 describes the surface water quality and ground water quality of the project corridor respectively. Section 3.11.3 describes the fauna in the study area and Table 3.16 presents the fauna details. Chapter 3, Table 3.9 presents the
•		

•	within 2 km of radius of the proposed road site Fix up the locations of representative monitoring stations along the proposed project road for surface and ground water resources and document them Samples should be collected for both surface and ground water and examined for physico- chemical, heavy metal and bacteriological parameters. Delineation of water sheds and water drainage pattern in the study area using remote satellite imageries	 major surface water bodies along the project corridor. Chapter 3, Tables 3.9 & 3.11 presents the surface water and ground water monitoring locations respectively. Chapter 3, Tables 3.10 & 3.12 demonstrates the water quality analysis for surface and ground water bodies respectively. Landuse & land cover map of the 10 km buffer zone is given in Chapter 7, Figure 7.2.
•	Anticipated Impacts Impact on surface water flow modification Impact on ground water table modification	Impacts on surface flow modifications are described in Chapter 4, Section 4.6.1 . As the proposed project does not require any major amount of water
•	Impact on water quality degradation (surface & ground water) Impact due to discharge of wastewater generation from the	The wastewater from the temporary
•	temporary project offices Impact on hydrological characteristics of the project area	project offices will be treated in septic tank / soak pit or portable STP. The hydrological characteristics of the project area are discussed in Chapter 7, Section 7.4.
4.3.3	Mitigation Measures	
•	Avoiding alignments which are susceptible to erosion, such as those crossing steep slopes	Most of the stretch has ruling gradient except between Bannerghatta and Kanakapura road, where deep cut and fill is to be done (falls in Phase II)
•	Minimizing the number of water	Except natural streams there are no

		and the strength of the set of the
	crossings wherever possible	major rivers in phase 1.
•	Leaving buffer zones of	Undisturbed buffer zones will be left
	undisturbed vegetation (with	between road and bodies of water where
	increased in proportion to slope)	ever possible.
	between road sites and bodies	
	of water	All contractors analoged will be briefed in
•	Environmental specifications for contractors should cover the	All contractors engaged will be briefed in the starting about existing environmental
	required safeguards during the	guidelines and the rules and regulations
	design and construction stage	to be followed to meet the guidelines.
•	Adequate sanitation facilities	Construction laborers' camps shall be
	and hygiene at construction	located away from the habitation and
	workers colony should be	from major water bodies. Adequate
	provided.	sanitary facilities, drainage, washing and
		toilet facilities with septic tanks and
		refuse collection and disposal should be
		provided to the workers. The provision of
		water supply and toilet facilities should
		be made as per the stipulated guidelines
		in the Indian Labour Act.
		Plantation and landscaping will be done on either side of the road to avoid water
•	Proper landscaping on either	logging and surface runoffs.
	side of the road shall help to	logging and surface runons.
	avoid water logging and surface runoffs.	
4.4 No	Dise Environment	
4.4.1	Baseline	
٠	Select the location of monitoring	The noise monitoring locations details
	stations along the alignment of	along the alignment are given in
	the project covering sensitive	Chapter 3, Table 3.7. Noise levels at
	locations such as residential,	all the monitoring stations are
	hospitals, schools, sanctuaries	presented in Table 3.8 .
	etc. Monitoring should be done	
	for 24 hrs at each location	
4.4.2	Anticipated Impacts	
•	Noise levels may increase	Chapter 4, Section 4.8 describes the
l	during construction activity, due	impacts on noise levels.
	to operations of various	
	machines and equipments	

•	Noise levels may increase during operation of the proposed project due to increased activities. Prediction of noise levels should be done by using mathematical modeling at different representative monitoring stations Impact of vibrations during blasting activity, if any	Predicted noise levels with barrier and without barrier are presented in Chapter 4 Table 4.9 & 4.10 . Not applicable for this project.
4.4.3	Mitigation Measures Development of bypass roads to avoid road alignment through noise sensitive areas Adoption of proper surface design and maintenance Provision of noise barriers. Specifications for building noise protection devices clearly indicating the location, design and material, and should account for future road maintenance requirements Environmental specifications for contractors should cover the required safeguards during the design and construction stage Planning tall leafy and dense vegetation between roads and noise sensitive areas Integration with the local government and vehicular manufactures to conduct awareness campaign programmes on good practices of vehicle maintenance etc. to reduce the noise emissions	 While selecting the corridor following considerations were considered Avoided dense settlements, industrial & religious areas, steep slopes, uneven trains, etc. Noise generating equipment will be placed away from (500m) settlements, operated during day time only, noise barriers will be provided near sensitive areas like dispensaries, religious places and schools, Contractors will be advised to use the BIS certified machinery meeting CPCB guidelines for noise generation. Tall leafy and dense vegetation will be taken up between roads and noise sensitive areas to minimize the noise impacts. During construction period regular awareness programs will be organized under CSR activities on good practices of vehicle maintenance, etc. with integration of local government officials and vehicular manufactures.

4.5 Biological Environment 4.5.1 Baseline	
 Assessment of plant species with respect to dominance, density, frequency, abundance, density index, importance value index. Quantitative estimation of forest and non- forest flora Assessment of fauna and avidfauna indicating endangered and endemic species with respect to schedule of the wild life protection act Location of rational parks, sanctuary and wildlife migratory routes with in 15km radius of proposed project Information on dependence of local people on minor forest preducts 	The details of flora and fauna are covered in Chapter 3 Section 3.10 . The proposed project is not passing though any rational parks, sanctuary and wildlife migratory routes. The project is not passing through any major forest area except a stretch of 763m of Jarakabande kaval Forest in Yelahanka, hence there are no minor
products	forest projects which local people are dependent.
 Photographs showing the vegetation in the area 	Photographs of the proposed project are given in Annexure 3
 Biodiversity – terrestrial and aquatic 	

4.5.2	Anticipated Impacts	
•	A road project may have impacts on the ecology of the area directly or indirectly by causing	Impact on ecology of the area will be minimum since most of the trees are of common occurrence. Loss of trees will lead to Increase in soil erosion, loss of shade and other benefits of trees, and decline in air quality. The impacts on wildlife habitat will be
	Loss of wildlife habitat and biodiversity due to change in land use Fragmentation of wildlife habitat and territories	bare minimum as the project is around Bangalore city. Fragmentation of wildlife habitat and territories will be bare minimum as the project is around Bangalore city. Charges in water quality, soil profile,
	Charges in water quality, soil profile, noise, light and air pollution which may affect the nature and character of habitats Pressure on habitats wildlife as a result of increased access provided by roads Loss of forest resources, economically important plants, medicinal plants and threat to rare, endemic and endangered species.	noise, light and air pollution which may affect the nature & character of habitats will be minimum as project is around Bangalore city. No major wildlife habitats are disturbed, and several places cross drainage structures and minor bridges are proposed which can be used by wildlife movement. Around 519 plants are felled for the project; the minimum of three times the number of felled plant will be replanted in the nearby areas.
4.5.3 I •	Mitigation Measures Identification of sensitive natural environments in the early planning stage so that alternative routes, changes in width of the road can be examined Possibility of twin new road corridors with previously established transport rights-of- way, such as railway lines	Two corridors were identified; the one which is list environmental sensitive one is selected by avoiding dense settlement, potential agriculture, and plantation and forest areas.

 Provision of animal crossings in identified areas Compensate the loss of forest coverage by appropriate plantation programme Development of green belt along the alignment Regeneration of rare plants of economic importance including medical plants and wildlife species Conservation plan for conservation and protection of flora and fauna, wildlife migratory species and medicinal plants Institutional arrangements for implementation and monitoring of various mitigation measures Environmental specifications for contractors should cover management of work forces (control of poaching and fire wood collection), machinery (speed, noise and traffic) and prevention of erosion and contamination during construction 	identified areas of animals movements Trees shall be transplanted wherever possible to minimize the impacts of loss of trees. Areas of tree plantation cleared will be replaced according to Compensatory Afforestation Policy under Forest Conservation Act-1980. A greenbelt will be developed on both sides of the road alignment. Under CSR activities under coordination with forest officials regeneration of rare plants of economic importance including medial plants will be taken up on conservation and protection of flora and fauna Necessary budget will be allotted annually for implementation and monitoring of various mitigation measures. Contractors will be about environmental conservation measures especially about control of poaching, fire wood collection, control of speed, noise and traffic of vehicles, etc., at the time of allotting contracts of the works.
 4.6 Socio Economic and Health Environment 4.6.1 Baseline Details of the properties, houses, businesses etc. activities likely to be effected by land acquisition and their financial loses annually. 	Except bits in conurbation areas, the alignment runs in semiurban and rural areas. It runs in cropland predominantly (60%) and less extent in Agriculture plantation (17%), commercial plantation (16%). Land acquisition will be as per prevailing government R&R rules.

reg • Dat ap • Ide his site • Acc the	pplicable R&R rules and gulations ta on notified settlements and pplicable legislations, if any entification and prioritization of storical and archeological res cident data and diseases in e locality and existing health are facilities	No historical and archeological sites are acquired for the proposed project. The most common diseases are Dysentary, Diarrhea and Asthma in the study area, the medical facilities available in the study area are given in Chapter 3, Table 3.22 .
tra live site Dat cu ec the Soo pe	ta relating to historically, ilturally, archeologically and cologically important places in e study area cio- economic profile of the cople on both sides of the pundaries of the proposed	The demography of study area is given in Chapter 3, Table 3.17 to 3.20 . The major study area falls in Bangalore North Taluk, Bangalore district. Bangalore district is is the most advanced district in Karnataka. It had a population of 6,537,124 of which 88.11% is urban as of 2001. As of Census 2011, its population has increased to 9,588,910, with a sex-ratio of 908 females/males, the lowest in the state and its density is 4,378 people per square km.
4.6.2 Anti	icipated Impacts	
• Ana ne pre		The PRR alignment runs in 45% built up and is at some places lesser than 1 Km. from the existing ORR. The main objectives is to run the PRR alignment with least disturbance to the built up (residential / commercial / industrial) and at the same time giving maximum functional use for heavy volumes of motor traffic at high speeds. Around 639 properties will be acquired
se	ettlement from proposed site. apact on livelihood and loss of	from private commercial (130), private residential (502) and others like

properties	temples, chruches, etc. (7), and one
proportion	government property will be acquired,
	necessary compensation as per
	existing R&R scheme will be paid.
	All necessary control measures will be
 Impact on community resources 	taken up to minimize the impacts on
 Impact on historical and 	community resources, no historical and
archeological sites	archeological sites are nearby the
	proposed project site.
	Service roads are provided for slow
 Impact on the existing travel 	traffic and village traffic all along the
parts due to faster traffic,	proposed project, several under and
access controls and median	above passes are proposed for
barriers	convenience of local villagers. To minimize the road accidents, caution
- Increases in read accidents	boards will be provided at strategic
 Increase in road accidents 	places, curves, etc. speed restrictions
	will be kept on lanes.
	To minimize the impacts of the
 Impact due to the gentrification 	proposed road on nearby habitats,
effect	greenbelt will developed, noise barriers
 Impact due to accelerated 	will be erected at sensitive areas.
urbanization	
4.6.3 Mitigation Measures	
Rehabilitation plan for land	All acquired properties owners will be
outees, homestead outees and	adequately compensated with existing
for displaced persons.	R&R policy.
Institutional arrangement for	
effective implementation be	
assessed, if necessary	Method of calculation of compensation
strengthened Criteria and method of 	will be based on the type of property
 Criteria and method of calculation of compensation for 	land, construction, commercial value,
loss of land and crops. Proper	etc
counseling for guiding	
systematic financial planning	
with the compensate on	
package	Training will be provided to local people
Training local people for	for employing them in the proposed

 employing them in the proposed project Employment opportunity and access to other amenities such as primary education and health care facilities for local people Integration with the local master plan or the accelerated urbanization Road safety management plan, especially the road passes through the developed area Institutional arrangements for road safety and to deal the road accidents are assessed, if necessary strengthened Stipulation of environmental specifications for contractors 	 project. Under CSR activities of the BDA primary education, health care facilities of the local villages will be taken up. CSR activities will be taken up by integrating with local admiration setup. Road safety management plan will be part of the project all along the road to avoid road accidents will be studies and if required Institutional arrangements will be strengthened to minimize the accidents. Contractors will be informed about the environmental specifications to be followed for meeting the standard prescribed.
 4.7 Solid Waste Disposal Waste generated during construction may impact soil, agriculture and water quality Waste generated from workers camps may impact surface and ground water quality and agriculture Oil spillage/ leakage from machines and vehicles may contaminate earth Proper environmental specifications to be stipulated in the contacts 	The construction waste will be segregated and disposed for land leveling operations in low elevation areas. Waste generated from workers camps will be collected and disposed in nearby municipal waste bins. Oil spillage / leakage from machines will be attended immediately, in case contaminations, the contaminated soil will be disposed to local authorities for further treatment. Contractors will be informed about the environmental specifications to be followed for meeting the standard prescribed.

5.0	 Additional Studies Feasibility of utilizing construction materials such as fly ash to comply fly ash notification issued under EP Act,1986 Specific studies requirement depending up on the site activity proposed shall be discussed Public consultation (during EIA as well as public hearing) with the issues raised by the public and the response of the project proponent in the tabular form 	Cement manufactured using fly ash as per the fly ash notification issued under EP act, 1986 will be used for proposed project activities. Depending upon the site requirements necessary control measures will be taken up. Public Hearing (consultation) was held on 06.02.2014 at 11.00 am in Connection with the Proposed- Peripheral Ring Road Development, the response of the project proponent in the tabular form is enclosed as Annexure 4 .
6.0	 Environment Management Plan (EMP) & Post Project Monitoring Programme Administrative and technical set up for the management of environment Summary matrix of EMP and costing of EMP during construction and operation stage Summary matrix of Environmental monitoring during construction and operation stage Institutional arrangements proposed with other organizations/ Govt. authorities for effective implementation of environmental measures proposed in the EIA Safeguards/ mechanism to continue the assumptions/ field 	Post project EMP is discussed Chapter 10 . The summary of the matrix of EMP snf cost are given in Chapter 10 , Table 10.1 and Table 10.3 . The summary of the environmental monitoring plan is discussed in Chapter 10 , Table 10.2 . BDA will coordinate with other organizations and government authorities for effective implementation of environmental measures proposed. BDA will take up CSR activities in coordination with Bangalore North Taluk and Bangalore District authorities for effective implementation of funds

arriving the site suitability	under this project in the vicinity of the project area.
Specific social communities plan with name of the place/work budget allocation and time frame	

Annexure 1 Seismic Map of India – BIS Updated in 2014

Botanical Name	Popular name	Family name	Tolerant	
Citrus Lemon	Lemon	Rutaceae	Coal dust	
Calotropis procera	Akund	Asclepiadaceae	Polluted Conditions	
Mangifera Indica	Mango	Anacardiaceae	Dust collector	
Ficus benghalensis	Desoending tree	Moraceae	Dust collector	
Pithecolobium Dulce	Manila tamarind	Mimosaceae	Dust collector	
Azadirachta indica	Neem	Meliaceae	Sulphur diioxide	
Cicer arietinum	Bengal gram	Papilionaceae	Sulphur dioxide, Ozone	
Acacia arabica	Babul	Mimosaceae	Sulphur dioxide	
Tectona grandis L	Indian Oak tree	Verbenaceae	Dust collector	
Hellanthus annus	Sunflower	Compositae	Fly ash	
Opuntia monocantha	Prickly pear	Cactaceae	Sulphur dioxide	
Caesalpinia pulcherima	Peacock flower	Caesalpinaceae	Sulphur dioxide, dust	
Source: Guidelines for development Greenbelt – CPCB – PROBES/75/199-2000				

Annexure 2 Trees Tolerant to Pollution

Annexure 3 Project Photographs

Alignment crossing Bangalore Doddaballapura Railway line at CH: 19/400 from Bangalore city station.

Picture III

Picture IV

Picture II

Alignment crossing Bangalore- Tumkur Railway line near Soladevanahalli Station at CH:15/657 from Bangalore city station

PRR Crossing Old Madras road (NH4, CH:312.578Km) at CH:37.020Km

PRR Cutting across MRPL gas pipeline

	Response of the project proponent for issues raised in Public Hearing				
SI.	Gathered public	Pubic Query	Compliance		
No	details				
	Sri, Suresh, Soraunse	It has been informed that	BDA through their forest		
1.	Village	approximately 200 trees will be	Department conducted		
		cut, however in his 2.5 acres	tree counting survey in the		
		orchard there are about 30	month of January 2014		
		sapota plants and 60 coconut	and classified the trees as		
		trees, what is the basis that 200	-		
		plants have been estimated to	trees separately. BDA		
		be cut. He has further said that	decided to compensate		
		they are earning their livelihood	where ever plantation		
		by way of practicing sericulture	trees to be cut.		
		and horticulture. Development			
		of the road would deprive them			
		of their livelihood along with			
		increase in air and noise			
		pollution. Since he feels that			
		road project does not create any			
		new job opportunities, and			
		hence the project should be			
		dropped.			
	Smt. Rina Mahendra,	It was questioned that EIA	Even though EIA report		
2.	Avalahalli	report was prepared in 2010	was prepared in 2010		
		and already three years have	BDA has asked to EIA		
		elapsed and whether this report	consultants to modify the		
		can be considered. She also	report as per the		
		pointed out that the EIA report is			
		silent on whether the road	regulations. Other		
		alignment passes through	information sought by this		
		Thipagondanhalli Reservoir	public has been detailed		
		catchment area, existing gas	in the EIA Report.		
		pipeline and forest area.			

Annexure 4 Response of the project proponent for issues raised in Public Hearing

3	PRR-1 affected housing welfare samiti, No.108,Naganada nilaya, Yelahanka, Bangalore 64	There is no information regarding felling of trees and also due to project religious places, forest affects and there is no DPR for this proposed project.	Recently tree survey counting has been made and DPR is also prepared by the BDA
4	Villagers, Venkatala, Kotigenahalli and Kogilu Bangalore	Due to proposed project, vehicles ply on the road with high speed and make this place vulnerable to noise and dust pollution.	Vehicles speed will be controlled and green belt will be provided to reduce noise and air pollution
5	A Bhartiya Bharthi farm Yelahanka,Bangalore	what is the source of water for plantation	BWSSB treated water will be used for plantation
6	Sudhakar Hegade Dodda Gubbi	Petronet M.B.H.Ltd have installed gas pipe line along the Bilishivale, Rampura and Adur and due to this project, there is a chance of breaking a pipe line and leakage and causes disaster.	Proposed project is away from (500M) the petronet gas pipe line and there is no anticipation of any disaster.
7	Siddappa, Bilishivale	The proposed project, affects Thippagondanahalli reservoir catchment area and also affects due to cutting of trees	The drainage pattern will not be altered and storm water will be connected to the natural contours will not be disturbed and hence no problem for catchment area of Thippagondanahalli reservoir and afforestation will be undertaken to compensate the cutting trees.

Table of Contents

TABLE OF CONTENTS

Chapter No	Name of the contents	Page No
Chapter 1	Introduction	
	1.1. Introduction	1
	1.2. Need Of The Project & Study	1
	1.3. Scope of study	2
	1.4. Objective Of The Study	2
	1.5. Project components	3
	1.6. Project influence area	4
	1.6.1. Direct area of influence	4
	1.6.2. Indirect area of influence	4
	1.7. Methodology	5
	1.8. Study period	5
	1.9. Study area	5
	1.10. legal framework	7
	1.11. Additional Terms of Reference (TOR) for REIA Study	11
	1.12. Environmental Management Components	12
	1.13. Schedule	12
	1.14. Contents Of The REIA /EMP Report	13
Chapter 2	Project Description	
	2.1. Peripheral Ring Road (PRR)	16
	2.2. Terrain and Topography	16
	2.3. Resource Requirement	16
	2.3.1. Land	16
	2.3.2. Land requirement	17
	2.3.3. Abutting land use	18
	2.4. Design Standards & Features of the PRR Project	22
	2.4.1. Guide lines	22
	2.5. Design Considerations	26
	2.5.1. Alignment of Peripheral ring road.	26
	2.5.2. Terrain classification	27
	2.5.3 Design traffic volume	27
	2.5.4 Level of Service	27
	2.5.5 Lane width	27
	2.5.6 Kerb placement	27
	2.5.7 Cross slope / cross fall of pavement	28
	2.5.8 Road way crowing and shoulder	28

	2.5.9 Horizontal and vertival design	28
	2.5.10 Horizontal curve	28
	2.5.11 Minimum curve radius	28
	2.5.12 Super elevation & transition curve	28
	2.5.13 Gradients	29
	2.5.14 Minimum gradients for drainage	29
	2.5.15 Stopping sight distance	30
	2.5.16 Minimum vertical curve	30
	2.5.17 Horizontal clearance to obstructions	30
	2.5.18 Road designs	31
	2.5.19 Highway design	31
	2.5.20 Interchanges	31
	2.5.21 Treatment for junctions	32
	2.5.22 Accessibility	33
	2.5.23 Toll plaza	33
	2.5.24 Rest areas	35
	2.5.25 Vehicular underpass	35
	2.5.26 Pedestrian underpass	35
	2.5.27 Corridor pavement and drainage	35
	2.6. Source of water and Storage	36
	2.7. Manpower	37
	2.8. Power source	37
	2.9. Raw material	37
Chapter 3	Description of Environment & Socio – Economic Studies	
	3.1 Preamble	38
	3.2. Site description	38
	3.3. location of the project	39
	3.4. Meteorological scenario	41
	3.5. Monitoring period	41
	3.5.1. Wind Pattern during December – 2009	42
	3.5.2. Wind Pattern during January – 2010	42
	3.5.3. Wind Pattern during February – 2010	43
	3.5.4. Wind pattern during monitoring season - 2009	43
	3.6. Ambient Air quality	48
	3.7. Noise levels	51
	3.7.1. Methodology	52
	3.7.2. Presentation Of results	53
	3.8. Surface water quality	53

	3.9. Ground water quality	56	
	3.10 Land Environment	58	
	3.11 Details of Flora and Fauna in the Study Area	60	
	3.11.1 Seasonal Vegetation	61	
	3.11.2 Cultivated Plants	63	
	3.11.3 Fauna in the Study Area	64	
	3.12 Socio Economic Environment	66	
	3.12.1 Reconnaissance Study	67	
	3.12.2 Administration	67	
	3.12.3 Population and Geographical Area	67	
	3.12.4 Administrative Details of the Study Area	68	
	3.12.5 Literacy Levels	71	
	3.12.6 Electrification and Water Facilities	71	
	3.12.7 Medical Facilities	71	
	3.12.8 Market, Post offices and Police Stations	72	
	3.12.9 Roads and Monuments	72	
	3.12.10 Housing	73	
	3.12.11 Agriculture and Industry	73	
Chapter 4	Anticipated Environmental Impacts & Mitigation Measures		
	4.1. Assessment of potential environmental Impacts	75	
	4.2. Impacts on topography	78	
	4.3. Impacts on surface water drainage	78	
	4.4. Impact on climate	79	
	4.5. Impacts on soil Environment	79	
	4.5.1. Impact on Top Soil	79	
	4.5.2. Soil Erosion	80	
	4.5.3. Contamination of Soil	80	
	4.6. Impacts on Water resource environment	81	
	4.6.1. Impact on surface water quality	81	
	4.6.2. Impact on ground water quality	82	
	4.7. Impact on air Environment	82	
	4.7.1. Prediction of carbon monoxide (CO) Concentration	on 84	
	Using CALINE 4		
	4.7.1.1. Dispersion model along the project road	84	
	4.7.1.2. Environmental significance of carbon	85	
	monoxide		
	(CO)	85	
	4.7.2. Approach and Methodology	85	

	4.7.2.1. CALINE 4 Dispersion model	89		
	4.7.2.2. Results and Inferences	89		
	4.7.2.3. Conclusion	91		
	4.8. Impacts on ambient noise level	92		
	4.8.1. Conclusion	92		
	4.8.1.1. Without Barrier	93		
	4.8.1.2. With Barrier	95		
	4.9. Solid waste impacts	95		
	4.10. Impacts on Fauna. Flora and Ecological Environment	95		
	4.10.1. Impact On Fauna and Flora	96		
	4.10.2. Removal of Trees and Landscaping			
Chapter 5	Analysis of Alternatives			
	5.1. Site selection	99		
Chapter 6	Environmental Monitoring Program			
	6.1. Environmental Monitoring	100		
	6.2. Objectives	100		
	6.3. Responsibilities for monitoring	101		
	6.4. Performance indicators	101		
	6.5. Routine Monitoring	101		
	6.6. Site selection	101		
	6.7. Methodology	102		
	6.8. Ambient air quality monitoring (AAQM)	102		
	6.9. Water Quality monitoring (WQM)	104		
	6.10. Noise quality monitoring	108		
	6.11. Environmental monitoring plan	108		
	6.12. Environmental management division (EMD)	113		
	6.13. Cost of environmental monitoring	113		

Chapter 7 Additional studies

	7.1 Land use/ Land cover pattern studies	115
	7.1.1. Introduction	115
	7.1.2. Tools and Resources	115
	7.1.3. Data base	116
	7.1.4. Limitations	119
	7.2. Methodology	119
	7.2.1. Pre- Processing of Data	119
	7.2.2. Land use / Land cover classification for buffer zone	120
	7.2.3. Various land use classes	120
	7.2.3.1. Forest cover	120
	7.2.3.2. Agriculture Area	121
	7.2.3.3. Waste Lands	121
	7.2.3.4. Built- up area	121
	7.2.3.5. Mining Areas	121
	7.2.3.6. Water bodies	121
	7.3. Land use / Land Cover details of buffer zone	121
	7.4. Hydrological studies	123
	7.4.1. Catchment Area	124
	7.4.2. Hydraulic Design (IRC SP 13)	124
	7.4.3. Discharge Calculation	124
	7.4.4. Design Procedure	125
	7.5. Summary of hydrology and hydraulic Design	125
	7.6. Public Hearing	129
Chapter 8	Project Benefits	
	8.1. Employment potential	130
	8.2. Concluded Benefits of the project	130
Chapter 9	Environmental Cost Benefit analysis	
	9.1. Environmental Cost – benefits Analysis	132
	9.2. Cost Benefits analysis and the environment	132
Chapter 10	Environmental Management plan	

10.1. Development of environmental Management Plan		133
10.2. Environmental Compliance Monitoring Plan		147
10.3. Block Cost Estimates for environmental Protection		150
10.4. Afforestation	152	
	10.4.1. Afforestation Procedure	152
	10.4.2. Cost Estimates Of Afforestation	153

Chapter 11 Summary and Conclusion

	11.1 Introduction	154
	11.2. Need of the project	157
	11.3. Land Requirement	157
	11.4. Alignment of peripheral ring road	157
	11.5. Lane Width	158
	11.6. Source of water and storage	159
	11.7. Man power	160
	11.8. Power source	160
	11.9. Raw material	160
	11.10.Description of the environment	160
	11.10.1. Air environment	160
	11.10.2. Noise Environment	161
	11.10.3. Water environment	161
	11.10.4. Land Environment	161
	11.11. Environmental management plan	161
	11.12. Benefits of the Project	180
Chapter 12	Disclosure of Consultants	181

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

Rapid Environmental Impact Assessment Report (REIA) is prepared for the proposed Peripheral Ring Road project (PRR), being developed by Bangalore Development Authority (BDA) in order to identify the baseline environmental status of the project area; assessment of impact due to the proposed project on various environmental parameters and preparation of Environmental Management Plan (EMP) to mitigate the negative impact on these parameters.

1.2 Need Of The Project & Study

The proposed PRR is being developed to divert Intra-city Traffic through it around the Bangalore City beyond the existing Outer Ring Road (ORR). It's going to circumnavigate the city linking the major highways – Tumkur, Mysore, Old Madras, Hosur and district roads, thereby creating a direct corridor passage round the city. A plenty of commercial hubs and housing localities would come up along the Peripheral Ring Road (PRR). Most of the intra-city heavy trucks would prefer this corridor instead of the Outer Ring Road (ORR).

For every aspect of road projects, there are associated some significant positive and negative impacts on nearby communities and the natural environment. Some of the major environmental impacts of this project include loss of productive agricultural lands, water bodies, green cover, change in land use, accelerated urbanization etc. Keeping in view of the above impacts, environmental assessment was carried out for the present assignment in order to identify the base-line environmental profile of the project's area of influence due to the proposed development of the road and also to prepare Environmental Management Plan (EMP) in order to mitigate the identified adverse impact on the environmental components during the design, construction and operation stages of the project road.

M/s Ramky Enviro Engineers Ltd, Hyderabad

1.3 Scope Of The Study

The Government of India has made it mandatory for all development/constructional projects to prepare a detailed Rapid Environmental Impact Assessment Report (REIA) i.e., to study and predict the impacts with a suitable management plan. The detailed methodology and planning for the study is as follows:

The scope of study includes detailed characterization of existing status of environment in the study area with the proposed project for various environmental components viz. air, noise, water, land, biological and socio-economic components. The scope of Rapid Environmental Impact Assessment Report (REIA) is as follows:

- To assess the present status of air, noise, water, land, biological and socioeconomic components of environment
- Identification and quantification of significant impacts from the proposed project operations on various components of environment
- Evaluation of proposed pollution control facilities
- Preparation of a sound Environmental Management Plan (EMP) outlining additional control technologies to be adopted for mitigation of adverse impacts, if any
- Delineation of the post-project environmental quality monitoring program to be followed.

1.4 Objective of the Study

The heterogeneous flow of vehicular traffic along the road resulted in the reduction of the operating level of service at various mid block section and almost at all major intersections of Outer Ring Road (ORR). Hence there is an immediate need to augment the road network system by diverting the intracity traffic through a ring road beyond the existing Outer Ring Road (ORR) with "Peripheral Ring Road (PRR)".

The objective of the study is to carry out the preliminary reconnaissance survey in order to identify environmentally sensitive issues relating to the project and base-line condition.

- Assessment of potential impacts of the project on the base-line conditions;
- Formulation of mitigation measures to offset the identified adverse impacts;
- Formulation of Environment Management Plan (EMP) incorporating appropriate mitigation measures and monitoring plan

(EMP will cover the issues caused by severance and on other features deemed "sensitive" along the alignment)

The environmental studies have been confined to the situation around the deemed areas of direct influence caused by construction and operational facilities of the proposed project.

1.5 **Project Components**

The proposed Peripheral Ring Road (PRR) project alignment starts from - Tumkur Road at CH.17A (distance of 16-20 km from the Bangalore city railway station) on NH4 & terminate at Hosur Road near Begur CH.64.65 km (65 km) for a smooth flow of traffic, to reduce the traffic congestion, pollution intensity and travel time.

The various components and objectives involved in the project include design process and construction activities. some of the major activities likely to take place to implement the proposed project are: site clearing and grubbing, earth work, pavement removal, granular sub-base, water bound macadam sub-base/base, bituminous pavement layers, pavement widening, drainage, safety measures, bridge and culvert improvement, waste material management, equipment staging and materials, aggregate and sand quarries etc. These major activities have been taken into account while finalizing the methodology for the impact assessment of the project.

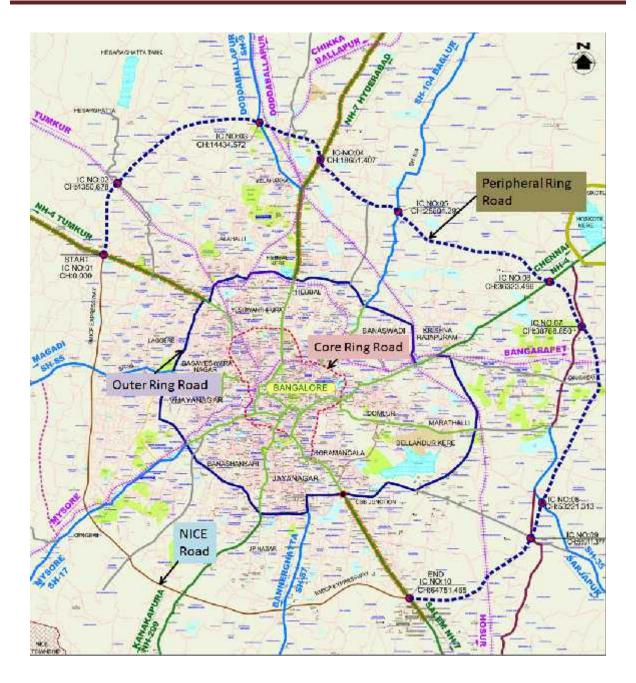


Figure 1-1: Key Plan of Existing Major Road Networks

1.6 Project Influence Area

1.6.1 Direct Area of Influence

The direct influence area of the project is restricted to proposed Right of Way (RoW) only, since the project development involves road formation and all construction and operation stage activities will be contained within it.

1.6.2 Indirect Area of Influence

As per MoEF guidelines for conducting EIA study (EIA notification, S O 1533 dated 14th Sept, 2006); the geographical area for highway projects for major environmental features like National Park, Wildlife Sanctuary, Critically Polluted Area, Notified Eco-Sensitive Zone, Inter-state Boundaries and International Boundaries, Coastal Zones, Areas protected under international conventions, defence installations etc. were studied/ recorded within 2 km radius of the project road.

1.7 Methodology

The study of impacts from the proposed project activities on environmental components can be quantified through Rapid Environmental Impact Assessment (REIA) within the impact zone. The results of Rapid Environmental Impact Assessment (REIA) studies form the basis for the preparation of a viable Environmental Management Plan (EMP) for mitigation of the adverse impacts. The Rapid Environmental Impact Assessment (REIA) studies for various environmental components viz. air, noise, water, land, biological and socio-economic environment.

1.8 Study Period

To prepare the Rapid Environmental Impact Assessment (REIA) report for the proposed project, the data was collected from **December to February (2009-2010)** in the study area. Micro meteorological parameters were recorded such as wind speed; wind direction and relative humidity on hourly basis during the study period.

1.9 Study Area

For the Rapid Environmental Impact studies (REIA), an area of about 2 km on either side of the Peripheral Ring Road (PRR) was identified as study area (Impact Zone). Geographical area was considered 2 km radius as indirect influence area of impact. The studies were conducted on each component and the details are reported in subsequent chapters.

a. Air Environment

In order to estimate the existing pollution levels in the region and to arrive at a baseline value for estimating the increase in the pollution load due to the proposed project activity, the air quality monitoring parameters such as PM_{10} , $PM_{2.5}$, $SO_2 \& NO_X$ were carried out for representing the baseline status of ambient air quality within the study area.

b. Noise Environment

An excessive noise levels can cause adverse effects on human beings and associated environment. Hence the noise survey was carried out at the site on either side of the proposed road up to 2 km to nearby areas.

c. Water Environment

Samples were collected at existing water bodies (surface & ground) at different selected locations in the study area. The parameters for water quality studies were selected for the physico-chemical characteristics of the water samples namely pH, EC, TDS, Alkalinity, Hardness etc.

d. Land Environment

The soil samples were also collected nearby areas on either side of the road up to 2 km distance, (impact zone) and determined the physico–chemical characteristics of the soil.

e. Eco-System

Information on eco-system within 2 km Impact zone was collected from the state Agriculture and Forest departments. The important flora species native to the area was also enumerated.

M/s Ramky Enviro Engineers Ltd, Hyderabad

f. Socio-Economic Status

A field study was done on either side of the road up to 2 km distance, the impact zone from the proposed project. The data was collected from affected villages and available secondary sources for socio economic status of the study area.

1.10 Legal Framework

A review of the applicable environmental regulations and institutions relevant to this project has been discussed in this section.

1. EIA notification 2006 and its amendments:

The EIA notification dated 14th September, 2006 imposes certain restrictions and prohibitions on new projects or activities, or on the expansion or modernization of existing projects or activities based on their potential environmental impacts as indicated in the schedule to the notification, being undertaken in any part of India, unless prior environmental clearance has been accorded in accordance with the objectives of National Environment Policy as approved by the Union Cabinet on 18th May, 2006 and the procedure specified in the notification, by the Central Government or the State or Union territory Level Environment Impact Assessment Authority (SEIAA).

The notification has listed out the Projects or activities requiring prior environmental clearance under Category "A" and "B" based on the spatial extent of potential impacts, and the intensity of those impacts on human health and natural and manmade resources. Category "A" projects require prior environmental clearance from MoEF on the recommendations of an Expert Appraisal Committee (EAC) and Category "B" projects require prior environmental clearance from MoEF on the recommendations of an Expert Appraisal Committee (EAC) and Category "B" projects require prior environmental clearance from State or Union territory Level Environment Impact Assessment Authority (SEIAA) on the recommendations of a State or Union Territory Level Expert Appraisal Committee (SEAC). In the absence of a duly constituted SEIAA or SEAC, a category "B" project shall be treated as a Category "A" project. New National Highways and expansion of National Highways

greater than 30 km, involving additional right of way greater than 20 m involving land acquisition is categorized as "A." All New State Highway projects; and State Highway expansion projects in hilly terrain (above 1,000 m AMSL) and or ecologically sensitive areas are categorized as "B." Any project specified in Category 'B' will be treated as Category A, if located in whole or in part within 10 km from the boundary of: (i) Protected Areas notified under the Wild Life (Protection) Act, 1972, (ii) Critically Polluted areas as notified by the Central Pollution Control Board from time to time, (iii) Notified Eco-sensitive areas and (iv) inter-State boundaries and international boundaries.

The proposed project being a new state highway having 65 km length with Right of Way of 75 m the project falls under Category "B" in the Schedule of EIA Notification 2006 and requires environmental clearance from SEIAA.

Further, recently MoEF, GOI amended EIA notification 2006, through notification #S.O.2559 (E) dated: 22nd August 2013. The recent amendment with reference to the proposed project is as follows.

Expansion of NH greater than 100 km involving additional right of way or land acquisition greater than 40m on existing alignments and 60 m on realignments or by-passes.

Additional Requirements under EIA Notification, 2006:

For the projects to be located within 10 km of the National Parks, Sanctuaries, Biosphere Reserves, Migratory corridors of wild animals, the project proponent shall submit the map duly authenticated by Chief Wildlife Warden showing these features vis-à-vis the project location and the recommendations or comments of Chief Wildlife Warden thereon (at the stage of EC).2. Since there is no National Parks, Sanctuaries, Biosphere Reserves or any migratory corridor of wild animals located within 10 km from the project road, this provision is not applicable to the present project.

M/s Ramky Enviro Engineers Ltd, Hyderabad

The Forest (Conservation) Act, 1980:

The Forest (Conservation) Act, 1980 prohibits diversion of forestland for non-forest use. As amended in 1988, no State Government or Authority shall make such diversions except with the prior approval of the Central Government.

Section 2 of the Act restricts the State Government on the de-reservation of forests or use of forestland for non-forest purpose. Section 3 of the Act empowers the Central Government to constitute an Advisory Committee (to advice the Government on the proposals received by it for the use of forestland for non-forest purposes).

Applicability of Forest (Conservation) Act to Roadside Strip Plantations:

Large-scale plantations have been taken up by different state governments under social forestry and other programmes along the linear strips of lands, which had been acquired by Government Departments like Railway, Irrigation, PWD, etc. for specific purposes like laying of roads, railway lines and canals. In order to have a better control and management of these linear patches, in many places these have been notified as protected forests. In the case of road projects, although the land is under the control of the highways department, due to its protected status, clearance is required to cut road side trees. Applicability of the provisions of the Forest (Conservation) Act, 1980 to the linear (road or canal side) plantations was modified by a notification from the Gol, MoEF, dated 18th February 1998. The new notification recognizes that the spirits behind the Forest (Conservation) Act was conservation of natural forests and not strip plantations.

In the case of roadside plantations notified to be protected, the clearance now may be given by the concerned Regional Offices of the MoEF, irrespective of the area of plantation lost. While issuing the approval, in place of normal provision for compensatory afforestation, the Regional Offices will stipulate a condition that for every tree cut at least three trees should be planted. If the concerned Regional Office does not accord the decision within 30 days of the receipt of fully completed application, the proponent agency may proceed with the widening / expansion under intimation to the State Forest Department and MoEF.

In the case of roadside plantations not yet notified as protected forests, it will not attract the provisions of Forest (Conservation) Act, 1980 for the purposes of widening or expansion or re-alignment. However, permission from Deputy Conservator of Forests (DCFs) of Territorial Forest Division of each district is required for the cutting and transportation of trees along the road.

Since around 519 major trees along the existing road require cutting permission from concerned DCFs, this provision is applicable.

The Water (Prevention and Control of Pollution) Act, 1974

The project requires consent for establishment (CFE) from the State Pollution Control Board of Karnataka pursuant to the Water (Prevention and Control of Pollution) Act, 1974, since the project activity involves in discharge wastewater from labour camps.

The Air (Prevention and Control of Pollution) Act, 1981

The project requires consent for establishment (CFE) from the State Pollution Control Board of Karnataka as per the Air (Prevention and Control of Pollution) Act, 1981, since project involves operation of Hot Mix Plants and Diesel Generator Sets.

The other legislations relevant to the project include Noise Pollution (Regulation and Control) Rules, 2000, The Motor Vehicles Act, 1988, Workmen Compensation Act, 1923, The Public Liability Insurance Act, 1991, Contract Labour (Regulation & Abolition) Act, 1970, Minimum Wages Act, 1948, Payment of Wages Act, 1936, Equal Remuneration Act, 1979, Child Labour (Prohibition & Regulation) Act, 1986, The Building & Other Construction Workers (Regulation of Employment & Conditions of Service) Act, 1996 and the Cess Act of 1996.

S. No	Type of clearance	Statuary Authority	Applicability	Project stage	Responsibility
1	Prior Environmental Clearance under EIA Notification, 2006	SEIAA	Applicable	Pre construction	BDA
2	Forest Clearance Under Forest Conservation Act, 1980	Karnataka State Forest Dept & MoEF	Not applicable	Pre construction	BDA
3	Tree felling permission under The Karnataka Forest Produce Transit Rules, 1969 / The Karnataka Preservation of Trees Act, 1976.	Karnataka State Forest Dept	Felling of avenue trees	Pre construction	BDA
4	CFE (Consent for Establishment) under The Air (Prevention & Control of Pollution) Act, 1981	KSPCB	For establishing hot mix plants, crushers and batching plants	Construction (Prior to work initiation)	Concessionaire / Contractor
5	CFE (Consent for Establishment) under The Water (Prevention & Control of Pollution) Act, 1974	KSPCB	For discharging of domestic waste water through soak pit	Construction (Prior to work initiation)	Concessionaire / Contractor
6	PUC certificate for vehicles for construction under Central Motor and Vehicle Act 1988	Transport Dept	For all construction vehicles	Construction (Prior to work initiation)	Concessionaire / Contractor
7	Quarry lease deeds and license under The Mines Act, 1958	Mines and Geology Department of Karnataka	Quarrying and borrowing operations	Construction (Prior to work initiation)	Concessionaire / Contractor

Environmental Permits / Approvals required for the project:

The application was made in the proforma specified (Form 1) at Appendix I of the said notification and along with feasibility report for finalising the Terms Of Reference (TOR) and based on TOR, a Rapid Environmental Impact Assessment (REIA) Report is prepared in accordance with the guidelines issued by the Government of India, Ministry of Environment and Forests (MoEF).

1.11 Additional Terms of Reference (TOR) for REIA Study Report

The SEAC, Karnataka considered the project during its 46th meeting held on 21.11.2009 based on the consideration of the documents submitted vide reference

letter no.BDA/EM/TA-3/PRR/EIA/T-333 dated 10.09.2009 along with Form-1 and proposed TORs as per the EIA notification 2006 and presentation made by the project proponent.

The State Level Expert Appraisal Committee (SEAC) vide ref. No:. SEIAA 32 IND 2009, Department of Ecology and Environment, M.S. Building, Bangalore dated 18th December 2009 communicated the finalized TORs for the preparation of REIA report for the development of eight lanes Peripheral Ring Road (PRR) from Tumkur Road, Bellary Road, Old Madras Road and Hosur road.

After preparing the draft EIA (as per the generic structure prescribed in Appendix- III of the EIA Notification, 2006) covering the above mentioned issues, the proponent take further necessary action for obtaining environmental clearance in accordance with the procedure prescribed under the EIA Notification, 2006.

1.12 Environmental Management Components

The various components which are considered for the environmental management aspects and to be included in the environmental management plan, broadly consists of environmental mitigation aspects, environmental performance indicators to be monitored and reporting system, environmental enhancement measures, Horticulture and landscaping aspects, financial aspects required for the effective implementation of the environmental management plan and institutional strengthening and training of the project implementation unit. These are discussed in the report herein.

1.13 Schedule

The time schedule required to complete the proposed project components is described in Table 1.1 briefly hereunder.

M/s Ramky Enviro Engineers Ltd, Hyderabad

Stop No.	Dressdurs	Total days	Days	
Step No.	Procedure	required	From	То
1	Issue of Pre-qualification blank forms	20	01	20
2	Receipt of completed pre- qualification application	20	21	40
3	Short-listing procedure and communicating bidders	30	41	70
4	Pre-bid meeting & issue of blank bid document to short-listed bidders	30	71	100
5	Receipt of final offers from short listed bidders	30	101	130
6	Evaluation, acceptance of offer and the contract agreement	30	131	160
7	Mobilization	25	161	186
8	Construction phase	912	187	1099
9	Opening of facility to traffic	7	1100	2199

Table 1.1: Time schedule (from the date of publication of pre-qualification notice)

1.14 Contents of the REIA /EMP report

With ref to the EIA notification of the MoEF, GOI dated 14th September 2006; the generic structure adopted for the preparation of the EIA Report as detailed below.

Chapter 1: Introduction

This chapter contains the general information about the proposed Peripheral Ring Road (PRR) and other details of the environmental clearance process.

Chapter 2: Project Description

This chapter contains the description of the project, such as, need for the project, project location, project layout, implementation schedule, and estimated cost of the project.

Chapter 3: Description of Environment

This chapter contains the baseline status of the proposed project area.

Chapter 4: Anticipated Environmental Impacts & Mitigation Measures

This chapter covers the Anticipated Environmental Impacts & Mitigation Measures.

Chapter 5: Analysis of Alternatives (Technologies)

This chapter contains the details of various alternatives both in respect of location of site and technologies to be deployed, in case the initial scoping exercise considers such a need.

Chapter 6: Environmental Monitoring Programme

This chapter includes the Environmental Monitoring Program and technical aspects of monitoring for the effectiveness of mitigation measures

Chapter 7: Additional Studies

This chapter include the details of the additional studies required and necessary needs which are applicable to the proposed project.

Chapter 8: Project Benefits

This chapter will cover the benefits accruing to the locality, neighborhood, region and nation as a whole. It should bring out details of benefits by way of improvements in the physical infrastructure, social infrastructure, employment potential and other tangible benefits.

Chapter 9: Environmental Cost Benefit Analysis

This chapter will cover the Environmental Cost Benefit Analysis of the proposed project.

Chapter 10 : Environnemental Management Plan (EMP)

This chapter will comprehensively present the Environmental Management Plan (EMP), which includes the administrative and technical set-up, summary matrix of EMP, the cost involved to implement the EMP, both during the construction and operational phases.

Chapter 11: Summary & Conclusions

It would provide the overall justification for implementation of the project explaining how the adverse effects are proposed to be mitigated.

Chapter 12: Disclosure of Consultants Engaged

This chapter include the names of the consultants engaged with their brief resume, expertise and nature of consultancy rendered.

CHAPTER 2 PROJECT DESCRIPTION

2.1 Peripheral Ring Road (PRR)

The Proposed Peripheral Ring Road (PRR) takes off at CH 17A on Bangalore Pune (NH4) about 150m distance from major bridge across Arkavathy River. The 65 km Peripheral Ring Road (PRR) is planned by Bangalore Development Authority (BDA) to circumnavigate the city. The project will be under taken starting from CH. km 0.000 to CH: km 64.5 (65). The project linking the major Highways, district roads right from Tumkur road, Mysore road, Old Madras road and Hosur Road.

2.2 Terrain and Topography

The Peripheral Ring Road (PRR) alignment passes through plain and rolling terrain and Greenfield site cutting across the major roads of Bengaluru. There are low lying areas along the project road stretch marked by a series of tanks. The Arkavati River flows past the proposed road at a distance of about 300 m towards Tumkur from the starting point of the project.

2.3 Resource Requirement

The following resources are required for the development of Peripheral Ring Road (PRR).

2.3.1 Land

The village wise land acquisition details of Peripheral Ring Road (PRR) will be earmarked for the development of Peripheral Ring Road (PRR). The land acquisition details are given in the following Table 2.1.

S.No	Planning District No	Name	Population 2001 (Lakh)	Area (Sq.km)	# Gross Population Density (No./ Sq Km)	Proposed major land use as per revised Master Plan – 2015
1	305	Bavalakere	0.12	27.31	439	Residential
2	306	Heserghatta	0.18	42.29	426	Green area
3	307	Yelahanka	0.98	38.71	2532	Residential
4	308	Bettaalasuru	0.21	35.30	595	Green area
5	309	Tanisandra	0.32	45.83	698	Residential
6	310	Bagaluru	0.21	48.44	430	Agricultural/Residential
7	312	Avalahalli	0.26	37.70	690	Residential/Commercial/ Industrial
8	314	Sadar Mangala	0.29	20.10	1443	Residential/Industrial
9	315	Whitefield	0.91	38.84	2343	Residential/ High-tech
10	316	Varthur	0.35	52.00	673	Residential/High tech
11	317	Dommasandra	0.20	41.69	480	Agricultural/Green area
12	319	Electronic city	0.46	36.60	1257	High tech
	Total		4.41	464.81		

Table 2.1: Village-Wise Land Acquisit	ion Details for Peripheral Ring Road
---------------------------------------	--------------------------------------

2.3.2 Land Requirement

The Peripheral Ring Road (PRR) runs in a cropland predominantly (60%) and less extent in Agriculture plantation (17%), commercial plantation (16%). The extent of land required for Peripheral Ring Road (PRR) including enabling services and interchanges is given hereunder.

65 km Road requires 1810 acres of land. Alignment of the proposed road passes through major junctions as listed in the table 2.1a.

Tumkur Road (NH- 4):	CH:00.00 km
Hesarghatta Road (SH):	CH: 04.99 km
Doddaballapura Road (SH) :	CH: 15.08 km
Bellary Road (NH):	CH:19.30 km
Hennur Road:	CH: 26.25km
Old Madras Road:	CH: 36.95 km
White Field Road:	CH: 41.13 km
Hoskote- Anekal Road:	CH:53.41km
Sarjapur Road:	CH: 56.09km
Hosur Road:	CH: 64.65km

Table 2.1(a): Major Junctions

The alignment of the road between Tumkur and Old Madras roads passes through agricultural / open land for substantial length and predominantly land use along the corridor can be considered as agricultural with an extent of residential. Between Old Madras and Hosur roads, the alignment passes through semi urban sections at isolated places. The alignment crosses the conurbation areas at 5 locations and avoids forest land in most of the places except at 1 location i.e., Jarakabande kaval at Yelehanka. (chainage 12.00 to 12.50)

2.3.3 Abutting Land Use

The alignment of the road between Tumkur and Old Madras roads passes through agricultural / open land for substantial length and predominantly land use along the corridor can be considered as agricultural with an extent of residential. Between Old Madras and Hosur roads, the alignment passes through semi urban sections at isolated places. The list of some of the villages /settlements / habitations along the project corridor is given in Table 2.2.

S. No	Village/Settlement	Chainage, km From	То
1	Madanayakanahalli	0	1050
2	Hanumantha sagara	1050	1630
3	Kudaregere	1630	2920
4	Tammenahalli	2920	4190
5	Soladevanahalli	4190	5100
6	Chikkabanavara	5100	5600
7	Kempapura	5600	7060
8	Kalathammanahalli	7060	7920
9	Kasagattapura	7060	8380
10	Byalakere	8380	10030
11	Mavallipura	10030	11875
12	Jarakabande kaval	11875	13065
13	Ramagondanahalli kavalu	13065	13456
14	Avalahalli	13456	14986
15	Harohalli	14986	16643
16	Kenchenahalli	16643	17089
17	Vasudevapura	17089	17581
18	Manchenahalli	17581	18365

Table 2.2: List of Villages /Settlements / Habitations

19	Vaderapura	18365	19013		
20	Venkatala	19013	19813		
21	Kattigenahalli	19813	20105		
22	Kogilu	20105	21867		
23	Agrahara	21867 228			
24	Tirumanahalli	22861 238			
25	Chokkanahalli	23850	25111		
26	Nagareswara nagenahalli	25111	25546		
27	Kottanuru	25546	25867		
28	Bairati	25867	26475		
29	Chikkagubbi	26475	26686		
30	Doddagubbi	26686	28534		
31	Bileshivali	28534	29911		
32	Vaderahalli	29911	30435		
33	Rampura	30435	32030		
34	Aduru	32030	33126		
35	Bidarahalli	33126	34107		
36	Herandahalli	34107	36177		
37	Chimsandra	36177	36727		
38	Avalahalli	36727	37520		
39	Bidarena agrahara	37520	38447		
40	Doddabanahalli	38447	38831		
41	Kannamangala	38831	39364		
42	Chikkabanahalli	39364	40253		
43	Sigehalli	40253	42484		
44	Kadgodi	42484	44312		
45	Channasandra	44312	45401		
46	Nagagondanahalli	45401	46582		
47	Hagadur	46582	47306		
48	Khanekandaya	47306	47432		
49	Belandur amanikere	47432	47951		
50	Sorahunse	47951	50073		
51	Varthur	50073	51411		
52	Gunjur	51411	53214		
53	Kachamaranahalli	53214	55248		
54	Sulakunte	55248	57938		
55	Kodathi	57938	58028		
56	Chokkasandra	58028	58276		
57	Avalahalli	58276	59626		
58	Gattihalli	59626	60481		
59	Huskur	60481	61346		
60	Gulimangala	61346	63537		
61	Hebbagodi	63537	64877		
62	Shingenaagrahara	63357	63710		
63	Veerasandra	64877			

Requirement of the properties for the Bangalore Development Authority (BDA)					
Properties to be acquired (Numbers))				
Details		Number of propert	ties		
	Developed	Vacant	Total		
Private Commercial	130	0	130		
Private Residential	502				
Others like temples, churches, etc.	0	7			
Total Number of private commercial,	other properties	639			
Total number of Government, Defen	ctor properties	1			
Total number of Government, Def	640				
community properties	-	-			

Table 2.2(a): Details of Properties to be Acquired for the Project

Diversion of Forest land:

The project road passes through Reserve forest at one location. Hence, sufficient care has been taken during design stage to minimize the impact on forest land by restricting the proposed RoW to the existing RoW available. As per the proposed design, the total forest land to be diverted is estimated to be 1.5 Ha and the chainage wise details of the same are presented as Table 2.2

Table 2.2(b): Details of Forest Area	proposed to be diverted for the Project Road
--------------------------------------	--

S. No	Proposed Chainage	Length (km)	Forest	Village	Survey no.	Area of the forest to be diverted in Ha
1	Ch12.000 to 12.500	763 m	Jarakabande kaval	Yelahanka	59	1.5

Tree Cutting:

Enumeration of trees along the project road was carried out during December 2013 to January 2014. Total number of bigger trees to be felled for the project is around 519 nos.

As presented in Table 2.2 C below, about 519 trees are expected to be removed from the right of way of the project road.

Chainage	Type of trees			Number of Trees in cm (Stem)					
	Local Name	Botanical Name	<80	<100	<200	<300	<400	<500	Sub
	Local Maine		cm	cm	cm	cm	cm	cm	Total
0-15000	Banyan	Ficus benghalensis			2	4	14		
	Teakwood	Tectona grandis		12	4				
	Jalimara		2	10					
	Jackfruit	Artocarpus heterphyllus		1		10			
	Mango	Mangifera indica		2					
	Tamarind	Tamarindus indica				51	2		
	Neem	Azadirachta indica		2	15				
	Honge	Pongemia pinnata	35	9	18	2	1		
	Silveroak	Grevillea robusta	75						
		Others	3			2	2		
		Total	115	36	39	69	19	0	278
	D	F '		0	1			1	1
15000-26000	Banyan	Ficus benghalensis		2					-
	Teakwood	Tectona grandis							<u> </u>
	Jalimara								
	Jackfruit	Artocarpus heterphyllus							
	Mango	Mangifera indica							
	Tamarind	Tamarindus indica		_	1				
	Neem	Azadirachta indica		7					
	Honge	Pongemia pinnata		9					
	Silveroak	Grevillea robusta		21					
	Others		2					1	
		Total	2	39	1	0	0	1	43
26000-59000	Banyan	Ficus benghalensis				4		1]
20000-39000	Teakwood	Tectona grandis				4		1	
		reciona grandis			1				-
	Jalimara				1				
	Jackfruit	Artocarpus heterphyllus			1	4			
	Mango	Mangifera indica			0	1			
	Tamarind	Tamarindus indica	•		2	2			
	Neem	Azadirachta indica	2			1			
	Honge	Pongemia pinnata	3	-					
	Silveroak	Grevillea robusta	-	6					
	Others		8	2	1	1			-
		Total	13	8	5	9	0	1	36
59000-65000	Banyan	Ficus benghalensis			5]
	Teakwood	Tectona grandis		80					
	Jalimara			00					
	Jackfruit	Artocarpus heterphyllus							
	Mango	Mangifera indica		15					
	Tamarind	Tamarindus indica		10			-	+	
				20					
	Neem	Azadirachta indica	_	30					
	Honge	Pongemia pinnata	5	00					<u> </u>
	Silveroak	Grevillea robusta		26					
		Others		1	1	1	1		
		Total	5	151	6	0	0	0	162

Table 2.2(c): Summary of the Trees Proposed to be cut

2.4 Design Standards & Features of the PRR Project

The Peripheral Ring Road (PRR) are pass transit, carrying high volumes of traffic with considerable speed in which, the entrances and exits are controlled by interchanges, it is being connected with other ways and arterial roads by grade-separated intersections. The project serves further for heavy loaded cargo trucks or to connect important areas within the city.

The advantage of the project is access controlled in future by and thus preserving the highway capacity, higher speeds and improved safety for the road users.

The following features of the project designed as a high-speed expressway corridor.

- Access controlled intersections.
- Right Of Way (ROW) of 75 m.
- Design as 8 lane dual carriageway with service roads.
- Provision of space for additional carriageways foreseeing the future traffic without being uneconomical.
- Provision for Bus Rapid Transit System (BRTS) lanes.
- Design of carriageway widths, capacities, design speeds and other geometric elements will be based on trucks and other fast moving vehicles.

2.4.1 Guidelines

All the project activities related to field studies, design have been done as per the latest guidelines/ circulars of MoSRT&H and relevant publications of the Indian Roads Congress (IRC) and Bureau of Indian Standards (BIS) and also the international standards for designs referred, especially the AASHTO publication, "A Policy on Geometric Design of Highways and Streets".

The following codes of practice were referred while the preparation of the design standards for the construction of Peripheral Ring Road (PRR) as listed below.

IRC: 73:1980, Geometric design standards for rural (Non-Urban) Highways

- AASHTO publication, A policy on Geometric Design of Highways and Streets, 2001
- IRC: 38:1988, Guidelines for design of horizontal curves for highways & design tables (First Revision)
- IRC: 52:2001, Recommendations about the alignment survey & geometric design of hill roads
- IRC: 62:1976, Guidelines for control of access on highways
- IRC: SP: 23:1993, Vertical curves for highways.

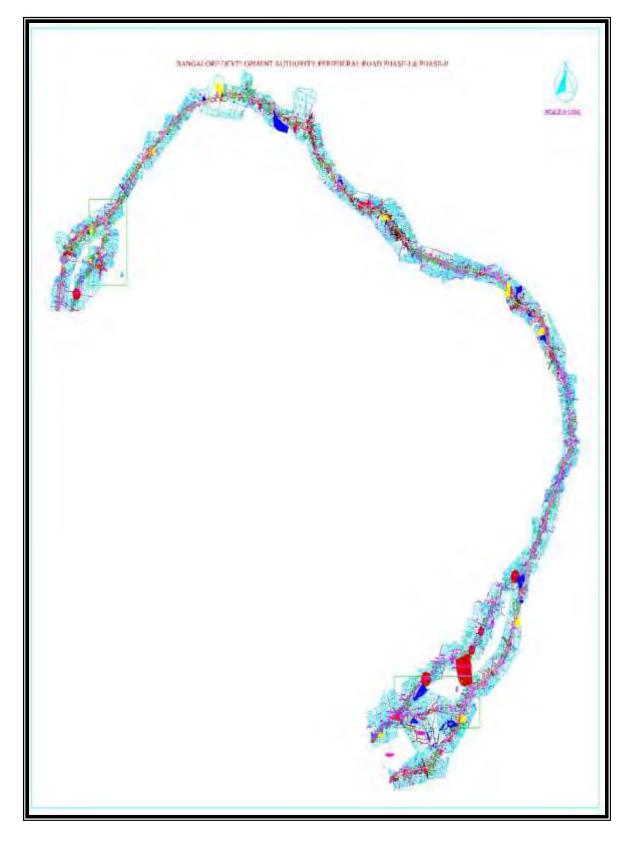
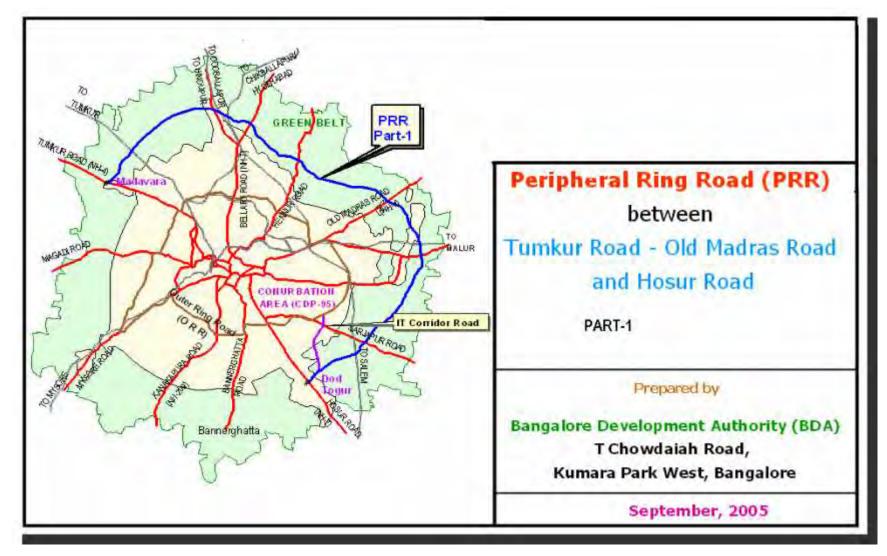



Figure 2.2: Location details of the project

2.5 Design Considerations

2.5.1 Alignment of Peripheral Ring Road (PRR)

The Alignment of Peripheral Ring Road (PRR) features are given in Table 2.3. The alignment crosses the conurbation areas at 5 locations and avoids forest land in most of the places except at 1 location.

S. No	Description	Technical Details				
Ι.	General Features					
1	Length	65 km				
2	Location	14-22 km from the city center & 2.8 – 11.5 km from the existing Outer Ring Road (ORR).				
3 Crossing		10 major roads: There are 5 Primary road networks NH-4 towards Pune on West, NH-7 towards Hyderabad on North, NH-4 towards Chennai on East, NH-7 towards Salem on South and NH-209 towards Dindigual towards South-West. In addition there are 5 radial Secondary roads – SH-9 towards Doddaballapur on North-West, SH-17 towards Mysore on South- West, SH-85 towards Magadi on West, SH-87 towards Bannerghatta towards South and SH- 104 towards Hennur.5 railway lines, 8 water bodies				
4	Drainages	48 major with one river Vrishabhavathi at CH 87.45 km & 20 minor water bodies.				
II. Ter	rain aspects					
5	Elevation	Highest: RL 941 m above MSL about 1 km W of Pillaganahalli				
6	Lowest	RL780 m above MSL 1 km West of Hemmigepur.				
III. Ali	III. Alignment running in existing land use					
1	Passing on existing roads	2.90 km				
2	Conurbation area	8.92 km (5 locations)				
3	Forest area	0.50 km				
4	Most of the stretch has ruling gradient except between Bannerghatta and Kanakapura road, where deep cut and fill is to be done.					

2.5.2 Terrain Classification

Terrain is the basic designing parameter that determines the geometry of the road. The Peripheral Ring Road (PRR) project falls under Plain/Rolling classification as specified in the Table 2.4 as per IRC Standards.

S. No	Terrain Classification	Percent cross slope of the country			
1	Plain	0 - 10			
2	Rolling	10 - 25			
3	Mountainous	25 - 60			
4	Steep	Greater than 60			

2.5.3 Design Traffic Volume

The Peripheral Ring Road (PRR) Project designed for a 20-year period to accommodate the traffic as per AASHTO international standards for design of high ways and streets.

2.5.4 Level of Service

The Peripheral Ring Road (PRR) Project designed for level of service as per AASHTO recommendations for the freeway and their auxiliary facilities (i.e. ramps, mainline weaving sections) in urban and developing areas.

2.5.5 Lane Width

The Peripheral Ring Road (PRR) constructing each single lane width at about 3.50 m as per Geometric design standards for rural Highways for Multi-lane pavements (IRC 73 1980).

2.5.6 Kerb Placement

In Peripheral Ring Road (PRR), a kerb shying at a distance of 0.50 m on each side of the central median would be adopted throughout the main carriageway as per AASHTO standards (0.30-0.60 m).

2.5.7 Cross Slope/Cross fall of Pavement

The Cross slope / Cross fall of the PRR Project designed as per IRC: 73:1980 standards given in Table 2.5.

Т	able 2.5: Camber / Cross fall values for di	ifferent road surface types

S. No	Surface Type	Cross slope / Cross fall
1	High type bituminous surfacing or cement concrete	1.7 - 2.0 percent (1 in 60 to 1 in 50)
2	Thin bituminous surfacing	2.0 - 2.5 percent (1 in 50 to 1 in 40)
3	Water bound macadam, gravel	2.5 - 3.0 percent (1 in 40 or 1 in 33)
4	Earth	3.0 - 4.0 percent

2.5.8 Road Way Crowning and Shoulder

As per AASHTO standards, a cross section with each road way crowning to be constructed separately and also the paved shoulder of 1.5 m in width to an extended width of main road.

2.5.9 Horizontal and Vertical Design

The Peripheral Ring Road (PRR) is designed for high-volume and high-speed operation for smooth flowing at horizontal and vertical curves.

2.5.10 Horizontal Curve

The Peripheral Ring Road (PRR) designed and restricted the super elevation up to 5% at horizontal and vertical curves as per IRC standards (7%).

2.5.11 Minimum Curve Radius

The Peripheral Ring Road (PRR) designed for minimum curve radii based on the following equation (e+f) = V2/(127 R) Considering a friction factor, f=0.15,

The minimum curve radius required for the horizontal geometry design for a super elevation of 5% and 7% with respect to design period are given in Table 2.6.

Table 2	2.6
---------	-----

Minimum Radii required for various speeds along with 5% Super Elevation

		Minimum Kadii required, m		
S. No	Design Speed, Kmph	Super elevation	Super elevation	
		5%	7%	
1	80	260	230	
2	100	400	360	

2.5.12 Super elevation & Transition curve

The Super elevation is the inward tilt given to the surface of the road to prevent the vehicle from skidding. The Super elevation during the construction of Peripheral Ring Road (PRR) designed & calculated by the formulae = V2 / 225R, as per IRC standards.

The minimum length of transition curve required for the Peripheral Ring Road (PRR) designs have been worked out as per the guidelines of IRC: 38.

2.5.13 Gradients

The gradients for the design of vertical curves chosen, keeping in view of design speed, terrain conditions and nature of traffic expected on the Peripheral Ring Road (PRR).

2.5.14 Minimum gradients for drainage

The minimum gradient provided for efficient drainage and pavement is provided with kerbs. The desirable minimum gradient for this purpose is given in Table 2.7 as per IRC: 73:1980.

S. No	Description	Minimum gradient
1	For lined slide drains	0.5%
2	For unlined side drains	1.0%

Table 2.7: Desirable Minimum	Gradient for Side Drains
------------------------------	--------------------------

2.5.15 Stopping Sight Distance

During the construction of Peripheral Ring Road (PRR), the sight distance should be of sufficient length to stop a vehicle traveling at design speeds. The stopping sight distance arrived as per IRC: 73:1980 are given in Table 2.8

	Speed		ption and reaction	Braking Coefficient Iongitudinal	Safe stopping sight distance m		
S No	(V)		Distance m	Calculated values			
	kmph	Sec	m	fiction, f	D2=v2/254f	d1+d2	Round off
1	80	2.5	56	0.35	72	128	130
2	100	2.5	70	0.35	113	183	190

2.5.16 Minimum Vertical Curve

During the construction of Peripheral Ring Road (PRR), the minimum length of vertical curves to be provided is 0.6 times the design speed as per AASTO and IRC:SP: 23 designed standards. The minimum length of vertical curves are calculated and given in Table 2.9.

S. No	Design speed, kmph	Minimum length of Vertical Curve			
1	65	40			
2	80	50			
3	100	60			

Table 2.9: Minimum Length of Vertical Curve

2.5.17 Horizontal Clearance to Obstructions

Horizontal clearance is a relatively flat area provided beyond the edge of the traveled way for the recovery of errant vehicles. During the construction of Peripheral Ring Road (PRR), This zone will be of 3.0 m distance and meet the AASTO and IRC: SP: 23 designed standards.

2.5.18 Road Designs

In Peripheral Ring Road (PRR), BDA has conceptualized 8-lane expressway with service roads and BRTS (exclusive public bus transport system) on both directions. Also provision is made along the central median (which is 12m wide) for providing the mono/metro rail facility.

2.5.19 Highway Design

The proposed Peripheral Ring Road (PRR) alignment has been designed for a speed of 100 kmph where ever possible. However, at a few locations the designs have been carried out for 80 kmph owing to restrictions at site. The vertical curves are designed as per the guidelines of IRC SP: 23. The summit curves are designed for the stopping site distance with a minimum vertical curve length of 73.6A and valley curves are designed for headlight distance with a minimum vertical curve length of 41.5A; where A is the algebraic difference in grades expressed as percentage.

2.5.20 Interchanges

An interchange is a grade separated intersection with connecting roadways for turning traffic between highway and approaches. The intersections are designed during the construction of Peripheral Ring Road (PRR) after contemplating the guidelines and schemes given in AASHTO and IRC: 92 guidelines. The proposals at interchanges are depicted in Table 2.10.

S. No.	Chainage	Intersecting Road	Type of Proposal
1	0	Tumkur Road (NH-4)	cloverleaf interchange
2	4+344.969	Hesarghatta Road	Flyover along PRR
3	14+422.500	Doddaballapur	Vehicular underpass along PRR and 6 lane Flyover along Doddaballapura road
4	18+637.242	Bellary Road (NH-7)	Vehicular underpass along PRR and 6 lane flyover along Bellary road.
5	25+596.788	Hennur Road	Vehicular underpass along PRR and 4 lane flyover along Hennur road.
6	36+233.070	Old Madras Road (NH-4)	Cloverleaf interchange

Table 2.10: Proposals at Interchanges

7	38+558.606	Whitefield-Hoskote Road	Flyover along PRR and Vehicular underpass along Whitefield- Hoskote road.
8	54+023.348	Hosekote-Anekal Road	Flyover along PRR and Vehicular underpass along Hoskote-Anekal road.
9	56+710.979	Sarjapur Road	Vehicular underpass along PRR and 4 lane flyover along Sarjapura road.
10	65+548.420	Hosur Road (NH-7)	Cloverleaf interchange

2.5.21 Treatment for Junctions

All the major junctions which Peripheral Ring Road (PRR) intersects are grade separated as per IRC: 92. The Tables from 2.11 to 2.13 gives the various proposals put forth at the various important road crossings, rail crossings and water bodies.

Tables 2.11: Important Road Crossings

S. No	Intersecting Road	PRR Chainage
1	Tumkur Road (NH 4)	0
2	Hesarghatta Road (SH)	4992.807
3	Doddaballapur (SH 9)	15085.349
4	Bellary (NH 7)	19301.547
5	Hennur Road	26254.711
6	Old Madras Road (NH 4)	36955.967
7	Whitefield Road	41134.516
8	Hosekote – Anekal	53410.008
9	Sarjapur Road	56098.277
10	Hosur (NH 7)	64654.694

S. No	Railway Crossing	PRR Chainage	Railway Chainage
1	Bangalore - Tumkur	4861.919	15/657 from Bangalore city station
2	Bangalore – Doddaballapur	15808.266	19/400 from Bangalore city station
3	Bangalore – Chikkaballapur	16711.309	002/642 from Yelahanka station
4	Bangalore - Chennai	43306.384	331/652 from Chennai station
5	Bangalore – Salem	59386.421	189/187 from Salem station

S. No.	Water bodies	Chainage (Km)	Distance (Kms)
1	Jarukabande Kaval Tank	14.43 – 18.65	8kms
2	Yalahanka Tank	18.65 – 25.60	4kms
3	Thirumanahalli Tank	25.60 - 36.32	4kms
4	Bidarena agrahara Tank	36.32 - 38.76	10kms
5	Chikkabanahalli Lake	43.13 – 53.22	8kms
6	Gunjur Lake	53.22	1.2kms
7	Kachamaranahalli Tank	53.53 – 55.9	6.0kms
8	Chikkanagamangala Lake	59.2 - 64.72	3.0kms

Tables 2.13: Major Water bodies along the PRR alignment

2.5.22 Accessibility

The Peripheral Ring Road (PRR) is speculated as a toll road. Provisions are provided for toll booths for tolling the road system. Accessibility to Peripheral Ring Road (PRR) is restricted to the following categories of roads

- National Highways;
- State Highways;
- Major District Roads.

2.5.23 Toll Plaza

The proposed Toll plaza to be located after the main carriage way for capturing the traffic exiting on Peripheral Ring Road (PRR) main carriage way. The service road will be discontinued at all the toll plaza locations and a traffic lane of 5.5m will be provided along the side of the toll plaza for BRTS movements. All the traffic passing through the toll plaza section of road will have to pay toll. The public bus transport buses will be exempted from paying the toll. For the locals using the service road, separate pass can be provided for gaining entry through the toll plaza. By providing the toll plaza away from the main carriageway, the main carriageway traffic is not disrupted. The toll plaza locations have been identified and given in Table 2.14.

S. No		Design Chainage (m)	Location	Toll able length (m)
1	Tumkur Road Interchange	1035.000	Main road toll plaza	4090
2	Hessarghatta ROB / Grade Separator	5125.000	Entry and Exit plaza - right side of interchange	
3	Doddaballapur road	14000.000	Entry and Exit plaza - left side of interchange	12965
4	grade separator	16640.000	Entry and Exit plaza - right side of interchange	
5	Belalry road grade	18025.000	Entry and Exit plaza - left side of interchange	4025
6	separator	19525.000	Entry and Exit plaza - right side of interchange	
7	Hennur road grade	24600.000	Entry and Exit plaza - left side of interchange	5075
8	separator	26435.000	Entry and Exit plaza - right side of interchange	
9	Old Madras road	35080.000	Entry and Exit plaza - left side of interchange	10480
10	grade separator	36835.000	Entry and Exit plaza - right side of interchange	
11	Whitefield road grade	38200.000	Entry and Exit plaza - left side of interchange	3120
12	separator	39800.000	Entry and Exit plaza - right side of interchange	
13	Hosakote Sarjapura	53380.000	Entry and Exit plaza - left side of interchange	15180
14	road grade separator	5490.000	Entry and Exit plaza - right side of interchange	
15	Banglore Sarjapura	56100.000	Entry and Exit plaza - left side of interchange	2720
16	road grade separator	57530.165	Entry and Exit plaza - right side of interchange	

Table 2.14: Toll Plaza locations:

2.5.24 a) Rest Areas:

Rest areas are proposed at 3 locations, one each in each section. These are proposed to be located near to interchanges. The exact location of rest area will be dependent on land acquisition extends proposed by BDA. Typically, rest area will include facilities like toilets, dormitory, rest rooms, medical shops, dispensary, ATMs. In addition, rest area will also comprise of sufficient working area and space for repair shops, vulcanizing shops, service centre, spare parts shops, telephone booth, hotels and light refreshments with first aid facilities can be provided. Rest area will be adequately lit with high mast lighting. Th whole area will be elaborately landscaped to provide a pleasing environment.

2.5.25 Vehicular Underpass

The proposed Peripheral Ring Road (PRR) is designed as an access controlled expressway. The underpass provides a two lane divided carriageway. The vertical clearance for the underpass is kept as 5.50 m as per IRC 54 requirements. Also the vehicular underpass is provided with a 2.00m wide footpath.

2.5.26 Pedestrian Underpass

Pedestrian underpasses are provided at an interval not greater than 1000m unless there are restrictions due to site constraints. A rectangular subway section is adopted with the minimum width of pedestrian subway as 4.00m and the vertical clearance of 2.50m as per IRC: 103. The floor of the underpass is cambered to fall to channels on each side at a slope of 1 in 30.Provision is made to trap water entering from the ramps or steps.

2.5.27 Corridor Pavement and Drainage

The Corridor Pavement and drainage design consider for minimum of 15 years design life. With the increasing traffic and incidence of overloading, design traffic of greater than 30 msa is assumed pending traffic study and axle load survey: Using sub-grade soil having CBR of 2% min, the pavement composition as

adopted for Outer Ring Road (ORR) and as being presently used for Bangalore Development Authority (BDA) works is assumed. The min. general composition is assumed as per MOST standards as under:

- Sub-grade : 500 mm
- Granular sub-base : 300 mm
- Wet mix macadam : 300 mm
- Dense Bituminous macadam : 110 mm
- Semi-dense Bituminous macadam: 25 mm

For the provision of adequate drainage of rain water from the viaduct portion, drainage spouts with 50m dia stainless steel drain pipes shall be provided at an interval of 1.5 m c/c on either sides of carriageway in a staggered manner. The water on the earth filled portion shall be allowed to flow over the surface till the cross drain provided at the foot of the grade separator on either side of grade separator and then this water shall be taken to the road side drains through NP3 type RCC pipe of suitable size which shall be laid 600 mm below the road formation level over PCC bedding. The drainage arrangements shall be provided in the landscaping areas as well and then this water shall also be taken to the road side drains through NP3 type RCC pipe of suitable size which shall be laid 600 mm below the road formation level ower PCC bedding.

2.6 Source of Water & Storage

The total water requirement for the Peripheral Ring Road (PRR) constructional activities, utilities and green belt requirement is estimated around 3.5 MLD. The source of water is BWSSB treated water and canal water which is transported through tankers over to the designated places of the project.

The desired storage capacity of water proposed to be around 2000 m³. To ensure 24 hour water supply in zone, a 25 m³ capacity of Storage Reservoir (SR) has been planned at constructing area of Peripheral Ring Road (PRR).

2.7 Manpower

The manpower requirement during the construction stage is basically the construction labor. The total labor requirement is estimated as follows given in Table 2.16 and the manpower requirements during operations are local persons.

Table 2.16

Manpower – During Construction Phase

Development Year	Construction Labour
Year 1	575
Year 2	1000

2.8 Power Source

During operational process of the Peripheral Ring Road (PRR) an SPV distribution to all Individual activities will be undertaken. Initially power would be sourced from KPTCL to provide Uninterrupted Power Supply to the contractor during constructional phase.

2.9 Raw Material

The Raw materials required for the construction of Peripheral Ring Road (PRR) are as follows.

Sub-grade: 500 mm, Granular sub-base: 300 mm, Wet mix macadam : 300 mm, Dense Bituminous macadam : 110 mm, Semi-dense Bituminous macadam: 25 mm.

CHAPTER 3 DESCRIPTION OF ENVIRONMENT & SOCIO-ECONOMIC STUDIES

3.1 Preamble

Baseline Environmental status in and around the proposed Peripheral Ring Road (PRR) project located in Bangalore city depicts the existing conditions of Air, Water, Noise, Soil and Socio-economic environment. The baseline data was collected for various environmental components viz. Air, Noise, Water, Land and Socio-economics so as to compute the impacts that are likely to be arising out of the constructional activities covering an area of 2 km radially from the proposed project Peripheral Ring Road (PRR). In keeping with the legislative requirements, EIA Consultants M/s RAMKY Enviro Engineers Ltd, Hyderabad have carried out REIA (Rapid Environmental Impact Assessment) study based on the monitoring data of Air, Water, Noise and Soil collected for the Winter Season (December (2009) to February (2010) and collected the data through primary and secondary sources. The prediction of impacts on the base line environment due to the proposed project development has been carried out for this season based on the meteorological data collected from the Indian Meteorological Department (IMD). The details of the baseline study are presented in this chapter and also an Environmental Management Plan (EMP) has been prepared to manage and mitigate anticipated impacts.

3.2 Site Description

The proposed Peripheral Ring Road (PRR) takes off at CH 17A on Bangalore Pune NH4 about 150 m from major bridge across Arkavathy River. This 65 km peripheral road is planned by Bangalore Development Authority (BDA). It will be linking the major highways and the district roads right from Tumkur Road, Mysore Road, Old Madras Road and Hosur Road. The upcoming of Peripheral Ring Road (PRR) is expected to instigate vast developments along the corridor.

3.3 Location of the Project

The proposed Peripheral Ring Road (PRR) falls between the following geographic coordinates:

Latitude: 12⁰ 51' 03.6" to 13⁰ 07' 44.4" E

Longitude: 77⁰ 28' 48" to 77⁰ 46' 51.6" N

The project area is covered in Bangalore District. The buffer zone of project site covered in Survey of India Topo sheet No: 57 G/8, 57 G/12, 57 G/16, 57 H/5, 57 H/9 and 57 H/13. The proposed project is falling adjacent to the catchment area of Thippagondanahalli reservoir and also the Gas pipe line installed by the M/s. Petronet MBH Pvt. Ltd., care has been taken to avoid disturbance to the catchment area where natural flow of storm water. Regarding Gas pipe line, the proposed project is away from the pipe line installed (500 m). Hence there is no disaster anticipated.

Meteorological conditions

The study of meteorological conditions forms an intrinsic part of the Rapid Environment Impact Assessment (REIA) Study. The meteorological conditions of an area and the constructional activities are both intertwined and each has a definite influence over the other. Favorable weather conditions and the surroundings help the successful operation of project, while the construction activity influences the weather in both positive as well as negative ways.

The dispersion/dilution of the released pollutant over a large area will result in considerable reduction of the concentration of a pollutant. The dispersion in turn depends on the weather conditions like the wind speed, direction, temperature, relative humidity, mixing height, cloud cover and also the rainfall in the area.

A) Climate

The climate in the study region is generally hot and humid and is characterized with seasonal variations;

Winter	Dec to Feb
Summer	March to May
Monsoon	June to August
Post Monsoon	Sep to Nov

The climate setting of the area has been arrived by collecting the existing secondary data from IMD station Bangalore and by generation of primary data to ascertain the values.

Summary of the climatological data is presented here under. The data has been ascertained by establishment of a micro-meteorological station in the project area.

B) Temperature

The district has differing climatic condition in different areas on account of elevation and vegetation. April to June is warmest months. The temperature Bangalore gets down with the onset of South West monsoon and North East tumbles to a minimum of 15^oC by January after which there is reversal trend till the temperature reaches maximum of 34^oC.

C) Humidity

The air is generally humid in the region during the monsoon season when the relative humidity at 0830 hr was observed to be with a minimum and a maximum of 58% and 70% respectively. Similarly, at 1730hr, the value was observed to be with a minimum and maximum of 35% and 65% respectively. Generally, the weather during the other seasons was observed to be dry.

D) Rainfall

The district annual normal rainfall is 859 mm of which South-West monsoon account for 59.3% of the normal while North-East monsoon contributes 24.7% of the normal rainfall.

Predominant rainy season (Monsoon)	: July and October
Most rainy Month	: October
Most number of rainfall occurrences	: October

3.4 Meteorological Scenario

Regional meteorological scenario helps to understand the trends of the climatic factors. It also helps in determining the sampling stations in predicting the post project environmental scenario. Meteorological Scenario exerts a critical influence on Air Quality as the pollution arises from the interaction of atmospheric contaminants with adverse meteorological conditions such as temperature inversions, atmospheric stability and topographical features.

The critical weather elements that influence air pollution are wind speed, wind direction, temperature, which together determines atmosphere stability. Hence it is an indispensable part of any Air Pollution Studies and required for interpretation of base line information.

Wind speed and direction data recorded during the study period is useful in identifying the influence of meteorology on the air quality of the area. The meteorological data was collected at the site by installing an automatic weather station.

3.5 Monitoring Period

Meteorological data was collected for the study area during the months of winter (December, January and February (2009 - 2010), Wind Speed, Wind Direction, Temperature, and Relative Humidity were recorded on hourly basis for the total

study period. Wind roses on sixteen-sector basis (N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW) have been drawn for 00-08, 09-16, 17-24 and 00-24 hours. The details of the wind pattern along with the wind speed for the study period are presented in the following sections.

3.5.1 Wind Pattern during December - 2009

December month wind in various speed categories was calculated on the basis of total number of observations recorded in that particular wind speed category during the study period and is given in Table 3.1. The wind rose for the month of December 2009 is shown in Figure 3.1.

A glance at the average 24-hour wind rose diagram for the month of December 2009 reveals that the most dominant wind direction is E followed by NE,N,NNE and ENE during this time period with percentage of 41.4 %, 27.69 %, 10.48%, 3.63% and 2.15% respectively. Calm conditions prevailed for 9.41% of the total time.

3.5.2 Wind Pattern during January 2010

The daily-recorded data was processed and for the 00-24 hour's average data was also calculated. In, January occurrence of wind in various speed categories was calculated on the basis of total number of observations recorded in that particular wind speed category during the study period is tabulated in Table 3.2. The wind rose diagram for the month of January 2010 is given in Figure 3.2.

On keen analysis of the data recorded for this time duration reveals that the most predominant wind direction was E with the winds blowing for 38.71 % of the total time which is followed by SE, NE, N and NNE with a percentage frequency recording of , 13.44, 11.83, 5.38, 5.24. Wind was also recorded from other all directions which were comparatively. Calm conditions prevailed for 9.68 % of the total time.

3.5.3 Wind Pattern during February 2010

The daily-recorded data was processed and for the 00-24 hour's average data was also calculated. The May occurrence of wind in various speed categories was calculated on the basis of total number of observations recorded in that particular wind speed category during the study period and given in Table 3.3. The wind roses for the month of February 2010 are shown in Figure 3.3.

Keen observation of the data recorded for this period reveals that the most predominant wind direction was E with the winds blowing for 45.98 % of the total time which is followed by N,NE,ENE and SE with a percentage frequency recording are 18.45%, 13.39%, 3.57%, 2.83% respectively. Calm conditions prevailed for 9.82 % of the total time.

3.5.4 Wind pattern during monitoring of Winter Season 2009

The meteorological data-recorded for 00-24 hours with hourly interval with reference to wind speed and wind direction and the average data is interpreted and shown in the table 3.4. The wind rose for winter season (2009-10) monitoring is shown in Figure 3.4.

Wind		Total				
Direction	0.3 - 1.4	1.4 - 2.7	2.7 - 4.1	4.1 - 5.4	>= 5.4	TOLAT
N	7.12	2.96	0.27	0.13	0.00	10.48
NNE	2.96	0.67	0.00	0.00	0.00	3.63
NE	21.10	5.91	0.67	0.00	0.00	27.69
ENE	1.48	0.54	0.13	0.00	0.00	2.15
E	30.51	10.08	0.81	0.00	0.00	41.40
ESE	0.67	0.27	0.13	0.00	0.00	1.08
SE	0.94	0.94	0.27	0.00	0.00	2.15
SSE	0.67	0.13	0.00	0.00	0.00	0.81
S	0.54	0.27	0.00	0.00	0.00	0.81
SSW	0.00	0.00	0.00	0.00	0.00	0.00
SW	0.27	0.13	0.00	0.00	0.00	0.40
WSW	0.00	0.00	0.00	0.00	0.00	0.00
W	0.00	0.00	0.00	0.00	0.00	0.00
WNW	0.00	0.00	0.00	0.00	0.00	0.00
NW	0.00	0.00	0.00	0.00	0.00	0.00
NNW	0.00	0.00	0.00	0.00	0.00	0.00
	90.59					
Calms <0.3m/s	/	1				9.41
	66.26	21.9		0.13	0.00	100.00

 Table 3.1: Frequency Distribution Table for 00-24 hours for December 2009

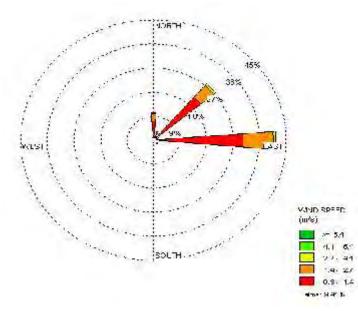
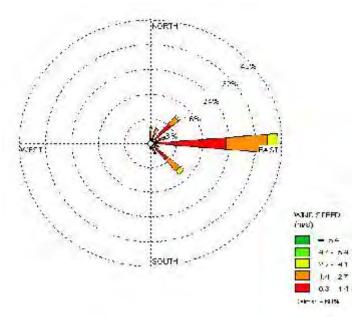



Figure 3.1: Wind Rose for the Month of December 2009 (00-24 Hours)

Wind	Wind Speed m/sec					
Direction	0.3 - 1.4	1.4 - 2.7	2.7 - 4.1	4.1 - 5.4	>= 5.4	Total
N	3.76	1.34	0.27	0.00	0.00	5.38
NNE	3.23	1.75	0.27	0.00	0.00	5.24
NE	8.33	2.82	0.67	0.00	0.00	11.83
ENE	3.63	1.08	0.27	0.00	0.00	4.97
E	23.12	12.37	3.23	0.00	0.00	38.71
ESE	1.88	0.94	0.13	0.00	0.00	2.96
SE	6.99	4.97	1.48	0.00	0.00	13.44
SSE	2.55	0.94	0.27	0.00	0.00	3.76
S	1.48	0.27	0.13	0.00	0.00	1.88
SSW	0.00	0.00	0.00	0.00	0.00	0.00
SW	0.67	0.13	0.27	0.00	0.00	1.08
WSW	0.00	0.00	0.00	0.00	0.00	0.00
W	0.67	0.27	0.13	0.00	0.00	1.08
WNW	0.00	0.00	0.00	0.00	0.00	0.00
NW	0.00	0.00	0.00	0.00	0.00	0.00
NNW	0.00	0.00	0.00	0.00	0.00	0.00
Calms <0.3m	, ,					9.68
Total	56.32	26.88	3 7.12	0.00	0.00	100.00

Table 3.2: Frequency Distribution for 00-24 hours for January 2010

Wind		Total					
Direction	0.3 - 1.4	1.4 -2.7	2.7 - 4.1	4.1 - 5.4	>= 5.4	Total	
N	15.33	2.83	0.30	0.00	0.00	18.45	
NNE	1.34	0.30	0.00	0.00	0.00	1.64	
NE	9.82	3.42	0.15	0.00	0.00	13.39	
ENE	3.13	0.45	0.00	0.00	0.00	3.57	
E	35.57	10.12	0.30	0.00	0.00	45.98	
ESE	2.38	0.00	0.00	0.00	0.00	2.38	
SE	1.79	1.04	0.00	0.00	0.00	2.83	
SSE	0.00	0.00	0.00	0.00	0.00	0.00	
S	0.89	0.00	0.00	0.00	0.00	0.89	
SSW	0.00	0.00	0.00	0.00	0.00	0.00	
SW	0.15	0.15	0.00	0.00	0.00	0.30	
WSW	0.00	0.00	0.00	0.00	0.00	0.00	
W	0.30	0.15	0.00	0.00	0.00	0.45	
WNW	0.30	0.00	0.00	0.00	0.00	0.30	
NW	0.00	0.00	0.00	0.00	0.00	0.00	
NNW	0.00	0.00	0.00	0.00	0.00	0.00	
Calms <0.3m/s	/	1	1			9.82	
Total	70.98	18.45	0.74	0.00	0.00	100.00	

 Table 3.3: Frequency Distribution for 00-24 Hours for February 2010

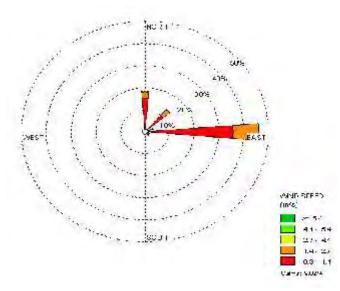


Figure 3.3: Wind Rose for the Month of February 2010 (00-24 Hours)

Wind	Wind Speed m/sec					
Direction	0.3 - 1.4	1.4 - 2.7	2.7 - 4.1	4.1 - 5.4	>= 5.4	Total
N	7.12	2.96	0.27	0.13	0.00	10.48
NNE	2.96	0.67	0.00	0.00	0.00	3.63
NE	21.10	5.91	0.67	0.00	0.00	27.69
ENE	1.48	0.54	0.13	0.00	0.00	2.15
E	30.51	10.08	0.81	0.00	0.00	41.40
ESE	0.67	0.27	0.13	0.00	0.00	1.08
SE	0.94	0.94	0.27	0.00	0.00	2.15
SSE	0.67	0.13	0.00	0.00	0.00	0.81
S	0.54	0.27	0.00	0.00	0.00	0.81
SSW	0.00	0.00	0.00	0.00	0.00	0.00
SW	0.27	0.13	0.00	0.00	0.00	0.40
WSW	0.00	0.00	0.00	0.00	0.00	0.00
W	0.00	0.00	0.00	0.00	0.00	0.00
WNW	0.00	0.00	0.00	0.00	0.00	0.00
NW	0.00	0.00	0.00	0.00	0.00	0.00
NNW	0.00	0.00	0.00	0.00	0.00	0.00
	Calms <0.3m/s)					9.41
	66.26	21.91	2.28	0.13	0.00	100.00

 Table 3.4: Frequency Distribution Table for 00-24 Hours for winter (2009-10)

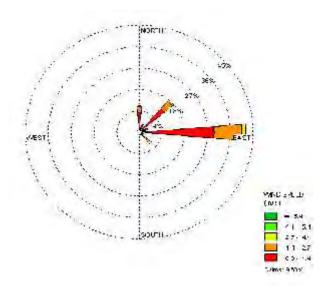


Figure 3.4: Wind Rose for the Month of winter (2009 – 10) (00-24 Hours)

3.6 Ambient Air Quality

Ambient air quality in the proposed project area is moderately good due to semi urban nature, no major polluting industries and existing plantation in that area.

Secondary information is not available on ambient air quality of the project area. No major sources of air pollution were identified during the field surveys; the traffic flow is expected to have some impact on air quality. The air quality status nearby the project corridor is presented: Since the project area is of rural nature, the collected baseline data has been compared with Residential/Rural/other areas.

The base-line status of the ambient air-quality was assessed using a scientifically designed ambient air-quality monitoring network. The design of this network was based on the following:

- Meteorological conditions
- Assumed regional influences on background air quality
- Areas where impact would most likely to be greatest
- Present land use along the proposed alignment
- Traffic congestion points.

Ambient Air Quality Monitoring (AAQM) stations were set up at ten locations as indicated in Table 3.5 below.

Code	Location	Description of the sampling location					
AAQ1	Start point @	The monitoring was undertaken 50 m away from proposed road					
	Tumkur Road	construction. The sampler was set on a Commercial building					
		and vehicular traffic flow on the highway was heavy.					
AAQ2	End point @ Hosur	The monitoring was undertaken 20 m away. The sampler was					
	Road	set on a building and vehicular traffic flow on the highway was					
		heavy.					
AAQ3	Veerasandra	The monitoring was undertaken 50 m away. The sampler was					
	Industrial Area	set on a Commercial building and vehicular traffic flow on the					
		highway was heavy.					
AAQ4	Hosur Road to Old	The monitoring was undertaken 30 m away. The sampler was					

	Madras Road	set on Hotel building and vehicular traffic flow on the highway						
	Junction	was moderate.						
AAQ5	Old Madras Road to	The monitoring was undertaken 50 m away on a Hotel building						
	Hosur Road Junction	and the traffic flow on the highway was moderate.						
AAQ6	Old Madras Road to	The monitoring was undertaken 10 m away from the project.						
	Bellary Road	The sampler was set on a Residential building and vehicular						
	Junction	traffic flow on the highway was moderate.						
AAQ7	Bellary Road to Old	The monitoring was undertaken 10 m away. The sampler was						
	Madras Road	set on a Residential building and vehicular traffic flow on the						
	Junction	highway was moderate.						
AAQ8	Bellary Road to	The monitoring was undertaken 10 m away. The sampler was						
	Tumkur Road	set on a Residential building and vehicular traffic flow on the						
	Junction	highway was moderate.						
AAQ9	Tumkur Road to	The monitoring was undertaken 10 m away. The sampler was						
	Bellary Road	set on a Residential building and vehicular traffic flow on the						
	Junction	highway was moderate.						
AAQ10	Forest area	The monitoring was undertaken 10 m away. The sampler was						
		set in an ambient air						

At each of the ten locations monitoring was undertaken for two days a week over a four Weeks period (as per National Ambient Air Quality Monitoring (NAAQM) guidelines) Data for the following parameters were collected.

- Particulate Matter (PM 10 & PM 2.5)
- Sulphur Dioxide (SO₂)
- Oxides of Nitrogen (NO_x)

Sampling of Particulate Matter ($PM_{10} \& PM_{2.5}$) $SO_2 \& NO_x$ was undertaken on a 24-hourly basis while three 8- hourly samples were collected for PM, $SO_2 \& NO_x$ were monitored using M/s Enviro tech Instruments; Reparable Dust Sampler (APM 460) along with gaseous attachment (Model APM 415 & 411). Whatman GF/A filter papers were used for PM.

A summary of results for each location is presented in **Table 3.6**. These are compared with the standards prescribed by the Central Pollution Control Board (CPCB) for residential and rural zone.

Table 3.6. Results compared with the standards prescribed by the Central Pollution Control Board (CPCB) for Residential,

Industrial & Rural zone

Name of Monitoring Equipment used			Respirable Dust Sampler (RDS)											
Equipment sensitivity			PM 10 (μg/m3) (Gravimetric method)			PM 2.5(μg/m3) (Gravimetric Method)			SO2(µg/m3) (Ultraviolet Fluorescence Method)			Nox(µg/m3) (Modified Jacob & Hochheiser (Na Arsenic Method)		
Permissible AAQ standard Industrial/Rural/ /Residential and other area			100 μg/m3 (24 hourly)		60 µg/m3 (24 hourly)			80 µg/m3 (24 hourly)			80 μg/m3 (24 hourly)			
Ecologically sensitive area (Notified by central government)			100 (24 hourly)		60 (24 hourly)			80 (24 hourly)			80 (24 hourly)			
Monitoring Location	No. of Samples Drawn	Category* (R, I, S)	Min.	Max.	98% percentile	Min.	Max.	98% percentile	Min.	Max.	98% Percentile	Min.	Max	98% percentile
AAQ1	24	I	81.8	84.2	82.5	44.2	47.2	46.2	12.7	20.6	20.1	20.5	27.8	27.8
AAQ2	24		85.3	84.2	82.5	41.3	45.3	44.3	12.8	18.4	18.0	20.4	22.5	22.5
AAQ3	24	I	85.3	83.6	82.0	41.5	45.9	44.9	12.6	13.2	12.8	20.9	22.8	22.8
AAQ4	24	I	80.0	86.5	84.7	41.1	42.8	41.9	12.6	14.0	13.7	20.1	23.4	22.9
AAQ5	24	I	82.6	84.7	83.0	47.4	47.4	46.4	12.8	16.1	15.7	20.2	28.5	28.2
AAQ6	24	1	83.9	88.6	86.8	46.1	48.1	47.1	12.1	17.6	17.2	20.6	28.8	28.7
AAQ7	24	R	81.5	89.4	87.6	44.8	46.6	45.6	12.3	15.4	15.0	20.8	24.3	23.8
AAQ8	24	R	80.4	83.3	81.6	43.6	45.8	43.2	12.4	14.8	14.5	20.3	23.6	22.7
AAQ9	24	R	81.2	85.3	83.5	42.5	45.2	44.8	12.7	16.6	16.2	20.6	24.6	24.0
AAQ10	24	R	58.1	69.4	68.0	43.8	45.1	44.1	8.5	10.1	9.8	20.7	26.3	24.5

The PM₁₀ concentration was ranged from 80.5 to 89.0 μ g/ m³, PM_{2.5} is 40.4 to 46.8 μ g/ m³, NO_x ranged from 22.6 to 32.5 μ g/ m³, SO₂ ranged from 12.4 to 19.6 μ g/ m³. However, all parameters in ambient air were within the recommended air quality standards prescribed by the CPCB.

3.7 Noise Levels

With the project road carrying traffic passing through semi urban areas, the noise levels of the region were expected to be high. However no secondary information was available in this regard.

A preliminary reconnaissance survey was therefore undertaken to identify noise generating sources and sensitive receptors such as schools, built-up areas. Noise levels were monitored in the selected 10 locations listed in Table 3.7

Code	Location	Description of the sampling location
AN1	Start point @ Tumkur Road	The monitoring was undertaken 50 m away. The sampler was set on a Commercial building and vehicular traffic flow on the highway was heavy.
AN2	End point @ Hosur Road	The monitoring was undertaken 20 m away. The sampler was set on a building and vehicular traffic flow on the highway was heavy.
AN3	Veerasandra Industrial Area	The monitoring was undertaken 50 m away. The sampler was set on a Commercial building and vehicular traffic flow on the highway was heavy.
AN4	Hosur Road to Old Madras Road Junction	The monitoring was undertaken 30 m away. The sampler was set on Hotel building and vehicular traffic flow on the highway was moderate.
AN5	Old Madras Road to Hosur Road Junction	The monitoring was undertaken 50 m away from Hotel building and the traffic flow on the highway was moderate.
AN6	Old Madras Road to Bellary Road Junction	The monitoring was undertaken 10 m away. The sampler was set on a Residential building and vehicular traffic flow on the highway was moderate.
AN7	Bellary Road to Old Madras Road Junction	The monitoring was undertaken 10 m away. The sampler was set on a Residential building and vehicular traffic flow on the highway was moderate.
AN8	Bellary Road to Tumkur Road Junction	The monitoring was undertaken 10 m away. The sampler was set on a Residential building and vehicular traffic flow on the highway was moderate.
AN9	Tumkur Road to Bellary Road Junction	The monitoring was undertaken 10 m away. The sampler was set on a Residential building and vehicular traffic flow on the highway was moderate.
AN10	Forest area	The monitoring was undertaken 10 m away. The sampler was set on open scrub and vehicular traffic flow on the highway was moderate.

Table 3.7 : Ambient Noise Monitoring (ANM) stations

3.7.1 Methodology

At each of the 10 locations, Sound Pressure Level (SPL) measurements were taken at an interval of 1 minute using a sound level meter of Lutron make Digital Sound Level Meter. At all 10 locations, day time noise levels were monitored during the period 6 am to 10 pm and night-time noise levels during the period 10 pm to 6 am.

Noise readings, with setting at 'A' response - slow mode, were recorded. The readings were tabulated and a frequency distribution table prepared from which 24 hourly, hourly,

L10, L50,

L90, Leq, Lday, Lnight, and Ldn were calculated.

L10, L50, L90, Leq, Lday, Lnight, Ldn are statistical indicators.

L10 - is the noise level exceeded 10 percent of the time;

L50 - is the noise level exceeded 50 percent of the time; and

L90 - is the noise level exceeded 90 percent of the time.

Leq - is the continuous equivalent sound level providing the same sound energy as the actual fluctuating sound measured in the same period (Leq is significant when sounds fluctuate) – it is calculated as: (L10 - L90)

 $Leq (hrly) = L50 + \dots n$

Where n is the number of readings taken over a period of one hour, 60 in the present Case.

Lday - is the Logarithmic average of hourly Leq's for day-time hours from 6 am to 10 pm; Lnight- is the Logarithmic average of hourly Leq's for night-time hours from 10 pm to 6am; and Ldn – is the Day-Night Sound Level, the noise rating developed by CPCB for the specification of acceptable community noise levels from all sources - a 24 Hr equivalent sound level.

During night-time (10 pm to 6 am) a 10 dB (A) weighting penalty is added to the instantaneous sound level before computing the 24-hr average. This night-time

penalty accounts for the fact that night-time noise when people are sleeping is judged as more annoying than the same noise during the Daytime.

3.7.2 Presentation of Results

Day-time noise levels were found to vary between 54.2 dB (A) and 82.4 dB (A). The maximum day-time noise level of 82.4 dB (A) was observed. It is observed that at most of the locations the day-time noise levels exceeded the permissible limit of 55 dB (A) specified by CPCB for residential areas. This noise is mainly from vehicular traffic and local domestic/commercial activities.

Ambient Noise level leq dB(A)	Noise level dB (A)				
Location of sampling station	Day Time - dB (A)	Night Time - dB (A)			
CPCB - Standards	55	45			
AN1	82.4	62.2			
AN2	75.2	63.2			
AN3	54.2	41.8			
AN4	56.2	41.0			
AN5	80.3	58.6			
AN6	79.0	55.0			
AN7	60.2	52.6			
AN8	58.1	40.4			
AN9	81.1	59.6			
AN10	56.2	40.3			

Table 3.8 : Ambient Noise level leq dB(A)

Night-time noise levels were found to vary between 40.3 dB (A) and 63.2 dB (A). The maximum night time noise level of 63.2 dB (A) was observed. Most of the locations are surrounded by residential houses. It is observed that from 10 locations, 4 were within the permissible limits and 6 exceeded the permissible limit specified by CPCB for residential areas. The main noise sources were vehicular traffic and local domestic / commercial activities.

3.8 Surface Water Quality

Major surface water bodies exist along the project corridor are listed in Table 3.9 and selected to monitor the quality levels and the results are shown in table 3.10.

S. No	Location	Sample code	Location description
1	Jaraka Bande Kaval Kere	SW1	Water was collected from 2 m depth
2	Yelahanka Tank	SW2	Water was collected from 4 m depth
3	Tirumanahalli Tank	SW3	Water was collected from 1.5 m depth
4	Biderana Agrahara Tank	SW4	Water was collected from 2.5m depth
5	Chikkabanahalli Tank	SW5	Water was collected from 2 m depth
6	Gunjur Tank	SW6	Water was collected from 4 m depth
7	Kacharakanahalli Tank	SW7	Water was collected from 3 m depth
8	Chikkanagamangala Tank	SW8	Water was collected from 2.5 m depth

Table 3.9 : Surface water monitoring stations

Daramatara	SW1	C 1//2	SW2 SW3 SW4 SW5 SW6 SW7		SW7	W7 SW8	IS:10500(201	2) Standards		
Parameters	3001	3002	3003	5004	3003	3000	3447	3000	Acceptable	Permissible
Temperature (°C)	32	33	31	30	33	31	33	32		
рН	7.5	7.4	7.4	7.2	7.3	7.5	7.5	7.5	6.5-8.5	No Relaxation
Conductivity	1200	1280	1140	1080	900	1360	1450	1620		
Nitrogen (Nitrate) mg/l	0.4	0.7	0.6	0.5	0.4	0.6	0.7	0.3	45	No relaxation
Dissolved Oxygen mg/l	6.0	6.2	6.1	6.1	6.6	5.6	6.0	6.5	> 6 mg/l	
BOD mg/l	4.5	3.5	4.5	4.5	5.2	4.4	4.5	5.9	< 3 mg/l	
Fecal Coliform (MPN/100ml)	20	15	14	24	12	14	15	15		
Total Coliform (MPN/100ml)	174	180	178	184	182	184	172	168	< 50	

 Table 3.10:
 Surface water Analysis

3.9 Ground Water Quality

The groundwater occurrence for the project section is in mainly laterites formations. In laterites, the inherent porosity, jointed nature and fractures control water bearing capacity. In granites and granite gneiss formation ground water occurs under unconfined, Semi-confined and confined conditions in weathered and fractured zones.

Following table gives chemical quality of lateritic and Gneissic aquifers as given by Central Ground Water Board (CGWB), New Delhi. The information regarding the ground water quality along the project section is unavailable and hence a generalized quality is considered depending on the aquifers available in the project section. 8 locations listed in Table 3.11 were selected to monitor ground water quality.

S. No	Location	Sample code	Location description
1	Madanayakanahalli	GW1	Water was collected from 60m depth bore well used for drinking and domestic purposes.
2	Hebbagudi	GW2	Water was collected from 60 - 70 m depth bore well used for drinking and domestic use.
3	Veerasandra	GW3	Water was collected from 80 m depth bore well used for drinking and domestic purposes.
4	Gunjur	GW4	Water was collected from 95 m depth bore well used for drinking and domestic purposes.
5	Kadgodi	GW5	Water was collected from 85 - 75 m depth bore well used for drinking and domestic purposes.
6	Doddagubbi	GW6	Water was collected from 65 - 80 m depth bore well used for drinking and domestic purposes.
7	Bairati	GW7	Water was collected from 65 - 70 m depth bore well used for drinking and domestic purposes.
8	Avalahalli	GW8	Water was collected from 60 m depth bore well used for drinking and domestic purposes.

Table 3.11: Ground Water Sample Location

Deremetero	GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8	IS:10500(2012) Standards		
Parameters	GWI	GWZ	GWS	GVV4	GWS	Gwo	GWI	Gwo	Acceptable	Permissible	
рН	7.59	7.28	7.58	7.42	7.95	7.36	7.58	7.65	6.5-8.5	No Relaxation	
Conductivity	1360	1234	1248	1360	1460	1360	1320	1420			
Ca mg/l	2	12	13	24	14	28	32	28	75	200	
Mg mg/l	5.8	4.8	4.2	5.2	3.1	5.4	5.8	5.3	30	100	
Na mg/l	4.8	2.8	4.8	4.6	3.8	4.2	4.4	4.5			
K mg/l	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6			
CO ₃ mg/l	140	126	118	132	98	124	110	310			
HC0 ₃ mg/l	112	128	110	128	132	142	108	112			
CL mg/l	180	140	128	132	146	152	142	132	250	1000	
SO₄ mg/l	28	22	20	16	28	24	20	28	200	400	
NO ₃ mg/l	11	14	10	14	12	08	10	14	45	No relaxation	
Fe mg/l	0.12	0.14	0.16	0.22	0.21	0.18	0.24	0.24	0.3	No relaxation	

Table 3.12: Groundwater Analysis Report

Ground water quality observation: chlorides are within permissible limits and bicarbonates predominate over sulphates and nitrates. Ground water quality is also free from fluoride and alkali hazards.

In order to establish baseline conditions, 8 surface-water and 8 groundwater samples were collected. The sampling locations were selected after the field reconnaissance and physical observation of all the water bodies / resources in the influence area. Samples were collected as per IS- 2488 (Part I-V). Baseline information on the quality of surface and ground water sources along the alignment of proposed road is required before predictions of impacts. In order to represent the true profile of the project area, samples from all the major surface water sources through which the project road runs were collected and analysed (as per IS- 2488 (Part I-V)). Grab samples were collected from these locations and analysed for various parameters as per the procedures laid down in the APHA BIS. Atomic Absorption Spectrophotometer and UV/VIS and Spectrophotometer were used for analysis of water samples according to the necessity.

3.10 Land Environment

The main objective of interpreting soil for engineering purposes is to assess its suitability for various engineering practices on a sustained basis. But under the purview of this study only environmental properties of soil have been studied. The soil of the project region is lateritic, alluvial and marshy. The lateritic soils are predominant along the project section and characterized by high organic content, less of calcium and phosphorus. The soils are well drained from surface and acidic in nature. The alluvial soils occur in patches and are characterized by poor organic matter, and low calcium, phosphorus and potash content. These soils are well drained and acidic in nature. A marshy soil found in few sections of project area is subject to frequent flooding and show high water table. Soil samples were collected from 8 locations close to the project road and shown on Table 3.13.

S. No	Location	Sample code	Location description
1	Madavara lake	SQ1	The sample was taken from marshy area
2	Doddathogur lake	SQ2	The sample was taken from agricultural area
3	Yelahanka lake	SQ3	The sample was taken from commercial area
4	Tirumalahalli tank	SQ4	The sample was taken from agriculture area
5	Biderenahalli lake	SQ5	The sample was taken from commercial area
6	Gunjur lake	SQ6	The sample was taken from agricultural area
7	Chikkabanahalli lake	SQ7	The sample was taken from commercial area
8	Soladevanahalli lake	SQ10	The sample was taken from forest area

The samples were collected by ramming a core-cutter into the soil up to a depth of 100 cm and soil samples were collected from three different depths viz. 30 cm, 60 cm and 90 cm below the surface. The samples from three different depths were homogenized and packed in a polythene plastic bag and sealed. The sealed samples were sent to laboratory for the analysis of physical, chemical parameters and heavy metal concentrations. The samples were then analyzed as per standard procedures. Results are presented in Table 3.14 and compared with the standard classifications of the Indian Council of Agricultural Research (ICAR).

Parameters	SQ1	SQ2	SQ3	SQ4	SQ5	SQ6	SQ7	SQ8
Texture	Sandy	Sandy	Sandy	Sandy	Sandy clay	Sandy clay	Loam	sandy
pH	7.0	7.3	7.1	7.5	7.1	7.3	7.7	7.3
Moisture (%)	11.3	18.3	3.92	13.0	7.58	7.18	7.28	7.38
Organic Carbon (%)	0.58	0.68	0.22	0.33	0.82	0.82	0.82	0.82
Chloride (as Cl), mg/kg	3752	530	33	310	64	60	58	52
Nitrogen (as N), mg/kg	587	387	205	195	240	348	420	580
Phosphorus (as P), mg/kg	33	427	77	410	184	148	176	142
Potassium (as K), mg/kg	189	420	56	348	1043	1025	1040	1012
Alkalinity (as CaCO ₃)	120	Nil	12	Nil	Nil	Nil	Nil	Nil
Electrical Conductivity, mS/cm	8920	1425	39	41	90	84	76	58
Sodium Absorption ratio	6.2	2	0.4	1.4	0.1	0.8	0.9	1.3

The soil results are compared with soil *classification* given in the Hand Book of Agriculture, Indian Council for Agricultural Research (ICAR), New Delhi. The analysis shows that the soil in the study area is sandy in five locations, sandy clay in two locations and sandy clay loamy in one location of the study area. The

bulk density varies from 1.32 gm/cm3 to 1.54 g/cm3 which indicate that the soil consists of mineral content. pH ranges from 7.0 to 7.7, which indicates that the soil is moderately alkaline.

Nutrients: Soil quality was tested for nutrients. Nitrogen values range from 195 to 587 mg/kg which indicates that medium to high nitrogen is available in soil for vegetation. Potassium and Phosphorus are found to be available in sufficient quantity to support vegetation whereas Calcium, Magnesium was available in low to medium quantities.

It was observed that, the soil samples were neutral in nature, with a pH range of 7.0 to 7.7. The percent of moisture content in the soil (3.92%) was the lowest among other samples. The essential parameters like nitrogen and phosphorous are fond to be better and sufficient respectively. For potassium the samples shows a wide range of 56 to 1043 mg/kg.

The base line environmental profile concludes that the project area under consideration is an environmentally sensitive area and would likely to affect the flora and fauna of the area. However, the impacts would be lower in these areas and could be termed as moderate.

In rest of the section, the construction and its associated components expected to cause a few temporary impacts during construction. Chapter 7 of this report identifies potential impacts of the project based on the environmental monitoring and available secondary information.

3.11 Details Of Flora And Fauna In The Study Area

The vegetation of Bangalore district in general is regarded as deciduous jungle type with the exception of the valleys and a majority of species inhabiting these areas exhibit xenomorphic. The Bannerghatta forests in Anekal taluk represent the original flora typical of this region, which includes dry deciduous and thorny shrub forests. Most of the area is under cultivation for several centuries and now there has been

felling of all woody plants for fuel resulting in the growth of scrub vegetation. Vast areas are covered by thickets of extensive growth of lantana and other xenomorphic thorny shrubs rendering the area impenetrable and forming a most striking feature of the vegetation. The topographical and climatic features of the district are subjected to small regional variations and are, by and large, favorable for the growth of a variety of plants, shrubs and trees. The last few decades have witnessed an almost unabated denudation of forest due to over-exploitation and the simultaneous expansion of agriculture and industry. The natural vegetation of the district may be broadly grouped into seasonal vegetation, roadside and avenue trees which are planted and cultivated flora.

3.11.1 Seasonal Vegetation

Seasonal vegetation is common in open waste lands and cultivated fields. This type of vegetation is active during the major part of the year and remains dormant only for a few months, starting from November or December and extending to May. After the first showers of monsoon in May, the ground, 'which is barren, becomes covered completely by green grass, and a few pioneer members such as Cassia hirsuta (kadu uttarani in Kannada), Cassia kleinii (procumbent herb), Cleome gynandra (hispid herb), Cleome monophylla (koli kalu gida), Cynodon dactylon (garike hullu, perennial herb), Cyperus iria (dabbe-jambu hullu,glabrous annual herb), Ch(Imaesyce hirta (achchegida), Heliotropium scabrum (spreading villous herb), Mullugo penphylla (spreading herb), Priva cordifolia (pubescent herb) and Tribulus terrestris (sannan'eggilu). As the monsoon advances, the ground vegetation becomes dominant and completely covered by many annual weeds which continue to flower till late in November or December.

There are several small puddles on the plateau on top of Bannerghatta which retain certain amount of rain water. These puddles are mostly inhabited by Aponogeten natans (acquatic tuberous herb). During September, October and November, these puddles are completely covered by Aponogetentans and the thick mat of floating leaves along with other aquatic plants like Nymphaea, nouchali (kendavare,

rhizomatous herb), (Nymphoides indicum (rhizomatous herb with floating branches) and Nelumbo nucifera (tavare) for a pleasant sight There are certain characteristic formations. on account of its thick mat of floating leaves. Its eradication is a problem. There are few tanks and puddles here and there, where one notices a pure association of Typha angustata (anejondu, common water weed) and Polygonum glabrum (niruganigalu, stoloniferous herb) or Nelumbo nucifera and Polygonum lanigerum (branched marsh herb). Polygonum plebejum (kempunellakki prostrate herb) is a common weed in waste places, roadsides and cultivated fields.

The following are the major plants species found at Study zone area are

		J. I J. I	IUIA UELAIIS
1.	Pycus Tamentes	2.	Sapindus Trifoliatus
З.	Bengalicncy	4.	Zizziphus Jajuba
5.	Religiosa	6.	Cordia Myxo.
7.	Butia Monosperma	8.	Manogedera indica
9.	Dalbergia	10.	Psyatium Gua
11.	Albezzia Amara	12.	Scmicanpus Anaeodium
13.	Albezzia Odorttissima	14.	Anacardium Occidetale.
15.	Albezzia Lebbeck	16.	Pongamia Pimata.
17.	Bombax Malabariean	18.	Cassia Celiota
19.	Ingadelse	20.	Cossia Nodosa.
21.	Aeacia Arabica	22.	Tabubca Gyeana
23.	Aeacia Lueophlio	24.	Tccoma Urgentio.
25.	Aeacia Chundra	26.	Sweithenis Mohogoul.
27.	Phonex Spp.	28.	Miehelia Cham Poica
29.	Palmairah Spp.	30.	Samtalum Albaum.
31.	Diospyrus tupra	32.	Strictunx Potatosum.
33.	Eucalyptus & Cassurrima Plus.	34.	Azadirecta indica
35.	Acacia aurieuli formies.	36.	Melia dudea
37.	Denolro calamus Strictus	38.	Melia Azadereah.
39.	Bambooja Bamboo.	40.	Bahunia Purpurea.
41.	Eruthrina inticaq.	42.	Bahunia raccmosa.
43.	Peltophorum Encrmies	44.	Thespesia Papulania
45.	Ficus Raccmosa	46.	Susbemia Spp.
47.	Fieus hispida.	48.	Murraiaha Spp.
49.	Gravellia Robusta	50.	Mimusopu elengi
·			

Table No – 3.15: Flora details

51. Jectona Grandies.	52. Madhuea indica
53. Tamarindua Indiea	54. Albezzia dactiloidies.
55. Emblica officinalis	56. Samamea Saman.
57. Harduikia binata	58. Sapota, verities of mango,
	verities of Goa, &
	Pomegranate
59. Ficus Mysorensis	60. Grapes
61. Terminalia Arjuna	62. Grass & Verities of Grass.

3.11.2 Cultivated Plants

The common roadside trees planted in the district and villagers plant several species as protective hedges around their huts and cultivated fields. In such hedges are found Acacia famesiana (kasturijali, thorthy bush), Agave americana (bhutale), Euphorbia milii (spiny herb), Euphorbia tirucalli (kolukalli), Flacourtia circumscissa {miradi}, Jatropa gossypifolia (chikkakadu haralu), Kiraganellia reticulata (straggling herb), Lanatana tiliaefolia (rojanhuvu), Opuntia dillenii (papasu kalli), Pedilanthus tithymalaoides and synadenium grantii (yelekalli).

During the monsoon, the common climbers found straggling on these hedges are Arovreia cuneata (ka//anahambu, pubescent shrub), Boerhavia chinensis (bekkinahejjeballi, straggling herb), Cardiospermum halicacabum (agni balli, climbing pubescent herb), Cissampelos pariera (twining herb), Coccinia cordifolia (tondebalJi, scandent herb), Cocculus hirsutus (kagemari, straggling herb), Cuscuta rejlexa (badanike, parasitic herb), Dregea volubilis (kadehalballi, twining herb), Ichnocarpus frutescens (karehambu, twining r.lsty villous herb), Ipomoea maxima (talikiresoppu, twining herb), Ipomoea nil (gouribija, climbing villous herb), Melothria mucronata (scandent herb), Pergularia daemia (talavaranabalJi, climbing herb). and Trichosanthes bracteata (kagemariballi, scandant herb).

Parthenium, a new pernicious week, is a native of tropical South and North America. It is a herb growing to a height of one to two metres and possess tendency to attain perennial habit. The seeds are easily blown by wind and are carried by rainwater

besides moving along the blast associated with vehicular traffic and other agencies. This has moved gradually Tom one place to the other and could be seen along the highways, petrol bunks, on both sides of railway tracks and bus stops on the roadsides. Having reached to the city areas, it has moved to agricultural lands through city wastes lifted by the farmers and through rainwater and seepage water. In the residential areas, it has covered most of the vacant lands. From a few plants in Bangalore in 1973, it has spread all over the city and its surroundings now, Parthenium (Parthenium hysterophorous) occupied about 8,200 ha of which 1,600 ha was under cropped areas during 1977. This weed is rampant in uncultivated areas and is observed to suppress the useful vegetation like grasses. It has also been observed to be hazardous to the health of human beings and animals. Apart from chemical control, other integrated control measures have to be adopted to check the spread and growth of the weed. Considering the hazards of parthenium, it has been included under the Karnataka Agricultural Pests and Diseases Act of 1969 since 1975. **Source:** Agricultural University, Bangalore.

3.11.3 Fauna In The Study Area

Since the forest cover is quite sparse and most of the forest areas are small and are surrounded by agricultural lands, very few species of wild animals are found in the forests of the district occasionally, herd of elephants make an appearance in the forests and villages of Anekal taluk from forests of neighboring district. The larger game consisting mainly of cheetah or panther and the wild dog and animals such as the porcupine, jackal, wild cat, etc. are mostly confined to the forests of Anekal taluk. Among the smaller animals, field rats are numerous. Domestic animals consist principally of horses, cows, bullocks, buffaloes, sheep, goat, asses, pigs, dogs and cats. Following are the major animals found at study Area.

The alignment crosses the conurbation areas at 5 locations and avoids forest land in most of the places except at 1 location i.e., Jarakabande kaval at Yelehanka (chainage 12.00 to 12.50). Length of road through forest is about 500

m; drawing showing the alignment crossing the forest is shown in Figure 3.5 below.

Description of forest (categorisation like RF, PF, social forest etc.,) under jurisdiction of which division of the Forest Department, total area of forest at these location, area of forest that will be diverted for the project and the species present.

1. Cow & Variety of Cows	2. Ox
3. Buffalo	4. Bison.
5. Goats	6. Sheep's.
7. Pig	8. Monkey.
9. Peacock.	10. Parrot.
11. Crows.	12. Eagle.
13. Swan.	14. Gubbi.
15. King Fisher.	16. Snakes
17. Hare.	18. Frogs
19. White Ants.	20. Ants
21. Fishes	22. Centipede.
23. Flies	24. Squirrels.
25. Doga.	26. Forest Dogs.
27. Rats & Variety of Rats.	28. Earth Warms.
29. Soil Snakes.	30. Tortoise
31. Horses.	32. Ass
33. Sweet Crows.	34. Pigeon
35. Cat	36. Forest cat
37. Bees	38. Honey Bees
39. Rock Bees	40. Trice Driller
41. Dung Worm	42. Fox.
43. Wolf.	

Table No.3.16: Fauna Details

Figure 3.5: Drawing showing the alignment crossing the forest

3.12 Socio Economic Environment

Any developmental activity will have impact on the socio-economic conditions of the population in the region and there by on the quality of life. Socio-Economic Impact Assessment, to get an idea of changes on social, economic and cultural status. Baseline data for Demographic characteristics, Occupational status, and Health amenities existing in the study area has been collected.

Bangalore is the capital city of Karnataka State and it was famous as Garden city and now Silicon City also in India. It is centre of the state where all the policies of the state are finalized here itself and it has pleasant weather and by which it attracts the people from all the parts of the India. Bangalore city is the fastest growing city in the Asia Continent. Bangalore city had prestigious industries, Research institutes and Universities which plays important role in the development of city as well as state also.

3.12.1 Reconnaissance Study

Detailed socio-economic survey was carried out within 2 kms either side of the proposed PRR site and which falls Bangalore Urban & Rural district to assess the baseline status. Information on Socio-Economic profile of the Bangalore city and villages were collected from Taluk Offices, District Statistics and Primary Health Centers. Test check survey was also carried out by conducting interviews with local people and village heads.

3.12.2 Administration

Bangalore Urban district has four Taluks and 17Hoblies. To enhance better administration practices, Bangalore North Taluka was reorganized as Bangalore North (Additional) Taluka by adding some parts of Yelahanka region.

3.12.3 Population And Geographical Area

The total geographical area of the district is 2196 Sq km and it is small district in Karnataka, even though it stood first in terms of population (96.21 Lakhs). The population density of the district as per 2011 census was 4381 per Sq km. Out of total population 96.21 Lakhs, 50.22 Lakhs are of Males and 45.98 Lakhs are of Females. There was change of 47.18 percent in the population compared to population as per 2001. In the previous census of India 2001, Bangalore District recorded increase of 35.09 percent to its population compared to 1991.

As per 2011, census 9.06% of the population lives in rural areas. Out of total population 13.01% are of schedule caste and 1.31% is of schedule tribes.

3.12.4 Administrative Details Of The Study Area

The study area encompasses the villages and its hamlets of Bangalore North taluk, Bangalore district. The administrative details of the Taluks present in study area are given in Tables 3.17 to 3.20.

a. Area and Population

S. No	Taluka	Area in Sq km	Total	Male	Female	Urban	Rural	Density	Sex Ratio
1	Anekal	524	517575	282006	235569	352425	165150	988	835
2	Bangalore North	487	352420	185978	166442	270195	82225	724	895
3	Bangalore South	380	205274	109255	96019	154523	50751	540	879
4	Bangalore East	96	102607	53699	48908	94464	8143	1069	911
5	Bangalore City	709	9621551	5022661	4598890	871607	8749944	13571	916
	TOTAL	2196	10799427	5653599	5145828	1743214	9056213	2196	10799427

b. SC & ST POPULATION

Table No 3.18

S. No	Taluka	Schedule	ed Caste	Scheduled Tribe			
3. NU		Male	Female	Male	Female		
1	Anekal	56387	53695	7482	6294		
2	Bangalore North	33896	32919	6482	6034		
3	Bangalore South	18431	17659	18431	17659		
4	Bangalore East	12642	12429	1207	1123		
5	Bangalore City	607725	590660	99164	91075		
	TOATL	729081	707362	132766	122185		

Table No 3.17

c. Classification of workers

S. No	. No Taluka WORKERS		Non		Cultivators		Agricultural Labors			
3. NO	Taluka	Main	Marginal	workers	Male	Female	Total	Male	Female	Total
1	Anekal	230485	26374	260716	18237	4378	22615	10620	6849	17469
2	Bangalore North	137405	17557	197458	15463	3973	19436	6292	4004	10296
3	Bangalore South	87316	10260	107698	8235	2844	11079	5869	3522	9391
4	Bangalore East	38923	6213	57471	3851	988	4839	1876	1016	2892
5	Bangalore City	3858342	388585	5374624	60149	20261	80410	51519	25775	77294
	TOTAL	4352471	448989	5997967	105935	32444	138379	76176	41166	117342

Table No 3.19

Table No 3.20

S. No	Taluka	Workers in house hold Industries			Other workers			Total Workers		
		Male	Female	Total	Male	Female	Total	Male	Female	Total
1	Anekal	4517	1684	6201	140254	43946	184200	188471	68388	256859
2	Bangalore North	2044	1001	3045	80566	24062	104628	114416	40546	154962
3	Bangalore South	1710	808	2518	48208	16120	64328	69956	27620	97576
4	Bangalore East	1178	432	1610	22760	6822	29582	33128	12008	45136
5	Bangalore City	64162	26699	90861	2718123	891654	3609777	3115361	1131566	4246927
	TOATL	73611	30624	104235	3009911	982604	3992515	3521332	1280128	4801460

3.12.5 Literacy Levels

The literacy levels is given in Table 3.21

Taluka	Literate population (Rural)	Literate population (Urban)	Total Literates	Total Population	Literates %
Anekal	244810	125102	369912	517575	71
Bangalore North	188782	63151	251933	352420	71
Bangalore South	103328	38822	142150	205274	69
Bangalore East	65939	5148	71087	102607	69
Bangalore City	602859	6909417	7512276	9621551	78

Table No 3.21

3.12.6 Electrification And Water Facilities

Most of the houses in the city and villages are electrified, while some villages are benefited by the electric supply scheme for agriculture provided by the State government. The main sources of water supply in the area are public water supply by BWSSB, CMC'S and very few cases of hand pumps in villages. Few houses have latrines. The main difficulties expressed by the respondents are mosquito nuisance, improper drainage, in adequate sanitation facilities as the main issues raised during one to one meeting.

Almost all the villages in the study area are electrified. Firewood, cow dung cakes and cooking gas both LPG & Bio-Gas are the chief sources of cooking fuels.

3.12.7 Medical Facilities

People in the study area generally appear to be healthy compared to the people in the urban areas. However around 25% of the villages do not have medical facilities and the villagers have to travel 1 to 5 kms for getting proper medical aid. The most common prevailing diseases are Dysentery, Diarrhea and Asthma. Table 3.22 shows the facilities available in the Bangalore urban district.

S. No	Description	Bangalore North				
1	Allopathy	03				
2	Ayurvedic	00				
3	Private nursing homes	200				
4	Primary health centers	355				
5	Main health centers	87				
6	Dispensaries	05				
7	Family health centers	71				
8	Medical shops	2000				
9	Allopathy colleges	10				
10	Dental colleges	06				

Table 3.22

3.12.8 Market, Post Offices & Police Stations

Daily and weekly market facilities are available in most of the villages. Leather items making are the main industrial activity in this area. Communication facilities in the villages are quite good with all villages having Post offices and having Telephones booths. Police stations are present in all Taluk head quarter and Towns.

3.12.9 Roads & Monuments

All the parts of the Bangalore Urban were well connected with small roads, State highways, National Highways and Express ways. Villages are also approachable by Kacha or pukka road. Government and Private Bus services are available for approaching the all villages. Buses are connecting almost all villages in the study area. There are no important Monuments and Archeological places in the study area. Project awareness amongst respondents is good in the nearby villages.

		Road	length in kn	Road length in kms			
S No	Taluka	National Highway	State Highway	MDR	Male	Female	Total
1	Anekal	26	69	103	253.6	253.6	-
2	Bangalore North	43	64	120	226.76	226.76	-
3	Bangalore South	74	27	188	264.75	264.75	-
4	Bangalore East	-	11	45	48.27	48.27	4
5	Bangalore City	-	-	-	-	-	-
	Total	143	171	458	793.38	793.38	4

Table-3.23

3.12.10 Housing

The term "House Hold" is defined in census as a group of persons who live together and would take their meals from a common kitchen. There are 162080 households in the study area as per the 2001 census. Main occupation of the residents is agriculture and allied activities. There is a great demand for houses due to the yearly increase in population. The density of the people is around 2985 per sq.km and 5.1 persons per house.

Housing requirements directly depend on expected household sizes. If for instance, five persons per dwelling unit are normal, then the number of houses required can be calculated at least ten years in advance directly from this. Consideration is needed to be given for any possibility of residential sprawl and the area of land which might be affected because of the subsequent impacts on agriculture and other activities. Expansion of commercial and industrial activities will also have implications on land use. Considering the existing density, the demand for houses is not alarming.

3.12.11 Agriculture & Industry

Because of the closeness to the city of Bangalore, a number of industries have got established which are concentrated on either side of Bangalore –Tumkur and Bangalore –Doddaballapura road. Industrialization is the major sector for occupation and Agriculture is still exists as industry. Farming is mainly based on raising dry crops. There are about 465 tanks, 217 Open wells and 10300 Bore wells in the Bangalore Urban district. There is no irrigation land fed by tanks, however 60,814ha of land was cultivated with the help of seasonal rains and bore wells. Principle crop growing is Ragi, Fruits, vegetables and Flowers. Grape cultivation has gained in tempo exploiting ground water. Progressive farming with well laid out plots by application of modern methods of irrigation like sprinkler irrigation system are adopted in the taluk.

The land utilization details and types of industries exists in the taluk are tabulated in the table no.3.24 & 3.25.

Table 3	.24:	Land	Utilization
---------	------	------	-------------

		Area in Ha										
S. No	area	Geographical		Land not available for cultivation			Other uncultivated lands					
		Agricultural	Barren	Total	Cultivable waste	Permanent Pasture	Trees and Groves	Total				
1	Anekal	53518	2215	21396	1322	22718	1465	1552	2381	5398		
2	Bangalore North	78411	1145	38484	1994	40478	965	1197	3607	5769		
3	Bangalore South	55609	1345	34804	1037	35841	854	1852	1029	3735		
4	Bangalore East	29872	350	16752	558	17310	1160	1073	481	2741		
5	Bangalore City	-	-	-	-	-	-	-	-	-		
	Total	217410	5055	11436	4911	116347	4444	5674	7498	17643		

Table 3.25: Industries and employment

S. No	Taluka		Employeee				
3. NO		Textiles	Chemical	Engineering	Others	Total	Employees
1	Anekal	14	76	324	591	1005	78660
2	Bangalore North	34	91	912	759	1796	124400
3	Bangalore South	-	15	184	594	793	87969
4	Bangalore East	1	10	40	54	105	12381
5	Bangalore City	77	40	851	1679	2647	282707
	Total	126	232	2311	3677	6346	586117

CHAPTER 4

ANTICIPATED ENVIRONMENTAL IMPACTS & MITIGATION MEASURES

4.1 Assessment of Potential Environmental Impacts

The environmental impacts caused due to the development of the Peripheral Ring Road (PRR) project can be categorized as Primary (direct) and Secondary (indirect) impacts. Primary impacts are those which are induced directly by the project where as the secondary impacts are those which are indirectly induced and typically include the associated investment and changing patterns of social and economic activities due to the proposed action. Interaction of the project activities with environmental attributes is presented as activity-Impact matrix in Table 4.1. Potential direct and indirect impacts of the project during construction phase will be the following.

- ✓ Filling in low-lying areas for embankments of the road
- ✓ Loss of vegetation due to the cutting of trees
- Loss of Topsoil due to Clearing & Grubbing of new alignment, Borrow area and Construction of Camp, Material Stacking yard.
- Temporary impacts in terms of polluted environment on flora and fauna due to the construction activities.
- Impact on the drainage pattern due to raised embankment, introduction of new culverts and bridge constructions.
- ✓ Impact on Traffic Management System.
- ✓ Increased air pollution (including dust) during project road construction.
- Increased noise level due to the movement of vehicles and construction activities
- ✓ Increased soil erosion.
- ✓ Spillage of oils and other hazardous materials.
- ✓ Pollution of surface and sub-surface water sources.

- ✓ Pollution due to generation of Spoils and Solid Waste.
- Loss of trees & construction activities and impacts on tranquility of protected areas.

Potential direct and indirect impacts of the project during operation phase are the following.

- ✓ Increased noise pollution due to the vehicular movement
- ✓ Impact on natural drainage pattern of the project area
- ✓ Pollution of water bodies and impacts on its ecosystem due to hazardous
- ✓ Chemical or oil spillage into the water bodies.

The positive impacts of the project will be

- ✓ Reduced air pollution due to better service levels of the road
- ✓ Improved safe and efficient connectivity to Bangalore
- ✓ Generation of local employment during road construction
- ✓ Improvement of local economy due to better infrastructure facilities

Table 4.1

Activity - Impact Identification Matrix

S. No	Activities	F	npacts on Physical vironment			ogical onment	Geology		Topography
		Air	Water	Noise	Flora	Fauna	Natural drainage	Soil	
A. Con	struction Phase								
1	Labour Camp Activities		-ve/t						
2	Quarrying	-ve/t		-ve/t	-ve/t	-ve			-ve/p
3	Material Transport & storage	-ve/t		-ve/t					
4	Drilling and Blasting	-ve/t		-ve/t	-ve/t	-ve/t			
5	Earthwork						-ve/p	-ve/t	-ve/t
6	Pavement Works	-ve/t	-ve/t	-ve/t	-ve/t			-ve/t	-ve/p
7	Use of Construction Equipment	-ve/t	-ve/t	-ve/t		-ve/t			
8	Plantation	+ve/p		+ve/p	+ve/p				
9	Drainage Works						+ve/p		
10	Toll Plaza Construction	-ve/t		-ve/t					
11	Culvert and Bridge Construction		-ve/t	-ve/t			-ve/p		
12	Stripping of Topsoil							-ve/t	
13	Debris Generation					-ve/t		-ve/t	
14	Oil & Grease							-ve/t	
15	Construction	-ve/t	-ve/t	-ve/t	-ve/t	-ve/t	-ve/p	-ve/p	-ve/p
16	Destruction of Ecosystem	-ve/t	-ve/t	-ve/t	-ve/p	-ve/p	-ve/p	-ve/p	
B. Ope	erational Phase								
1	Vehicular Movement	-ve/p		-ve/p	-ve/p	-ve/p			
2	Impact on forest areas	-ve/p		-ve/p	-ve/p	-ve/p			
3	Toll Collection	-ve/p	-ve/p						

Note: t - Temporary; p - Permanent. Impacts indicated in bold letters are Significant Impacts.

The impacts caused due to proposed project activity are discussed in the following sections.

4.2 Impacts on Topography

During construction of the project, there would be cutting of slopes and filling which would change topography at some parts of the road. Earthwork for this would alter the existing topography although the impact of the same would be negligible. Removal of soil and earth strata at bridge approaches will cause changes in topography. Further, extraction of construction materials from selected borrow area, quarry location and sand mining areas will alter the terrain, affects the aesthetics of landscape and alters the contours of the geographical region. In addition, the section from Tumkur Road (NH4) to Hosur (NH7) is Plain/Rolling terrain and prone to landslide due to geological nature of the terrain. Protection measures need to be taken through construction, which might alter the topography at a localized level.

Precaution measures:

- Care shall be taken during embankment construction and cutting process, so that the natural drainage pattern in the areas will not be affected and adjacent flora should not be affected.
- Rehabilitation of borrow area and quarry area shall be carried out in order to control the water logging problem and to avoid the soil erosion and landslides of the adjacent area

4.3 Impacts on Surface Water Drainage

Eight water bodies, 48 major and 20 minor drainages with one river Arkravathi at ch 87.45 km crossing the project road. Minor impacts are anticipated on the surface water drainage in the project area during the construction phase due to the diversion of waterway. In addition, any embankment work in low lying areas shall have provisions for cross drainage for natural drains to ensure that flow is not affected during construction phase.

Precautions would be taken during the construction work of culverts and bridges across these drains and rivulets that these do not get blocked which may affect the cross drainage.

4.4 Impact on Climate

As the present project is to improve the road network, no changes in climatic conditions are anticipated. Moreover, landscaping is envisaged in the area along the entire length of the road, which will help in improving the overall microclimate of the area. In addition, the comparison of regional data on temperature and relative humidity of the project road does not show any appreciable variation. This implies that the improvement works envisaged in the existing road does not have any significant micro-climatic impacts.

4.5 Impacts on Soil Environment

4.5.1 Impact on Top Soil

The impact on soil due to the project will be in terms of topsoil erosion and it will not cause significant soil erosion. Soil pollution would take place to a negligible extent due to spillage of construction material, oil, fuel, grease and asphalt around the construction yards. Care should be taken to minimise spillages of construction materials. Loss of productive soil, during the construction stage, is envisaged at locations of workers' camps, stockyards, storage godowns etc if these are located on fertile areas. The Environment Management Plan (EMP) can ensure that no productive areas are used for these purposes and avoid adverse impact. In any case, though it would be a direct impact, it would be reversible and insignificant in nature. The soils in the RoW alignment are of lateritic and red soil type, capable of producing high yields, Soils both within and outside the RoW may be negatively impacted due to the proposed project. The loss of productive topsoil due to road construction is a direct adverse long-term impact. Since a major portion of the proposed alignment does not utilize agriculture land, there will be minimum permanent loss of agriculture soil and

land due to the road construction. In addition to this there will be temporary impact on productive soil at diversions, and labour camp due to leasing of land for construction period. Hence, the impact on soil during construction phase has to be controlled by strictly implementing the Environment Management Plan (EMP) suggested for the project. During the operation phase of the proposed project, no impact on the productive top soil is envisaged.

4.5.2 Soil Erosion

The soil in the study area varies from alluvial to red soil. Therefore the potential for erosion varies along the alignment. Soil erosion will be aggravated if the vegetation is removed from the sides since roots are known to hold soil together. However it will be of temporary in nature. It is not possible to construct the project road without removing trees and therefore erosion will be unavoidable.

Mitigation measures such as turfing of road embankment slopes with herbs, shrubs and grasses will take care of soil erosion in to a considerable extent. In borrow pits, the depth of the pit should be regulated so that the sides of the excavation will have a slope not steeper than 1 vertical to 4 horizontal from the edge of the final section of bank, The device for checking soil erosion include the formulation of sediment basins, slope drains etc, Cutting of trees in phases, will minimise the impact. No soil erosion is envisaged when the road is in operation as all the slopes and embankments of the project road shall be stabilized through turfing and pitching.

4.5.3 Contamination of Soil

Contamination of soil during construction stage is primarily due to construction and allied activities. The sites where construction vehicles are parked and serviced are likely to be contaminated because of leakage or spillage of fuel and lubricants. Pollution of soil can also occur in hot-mix plants from leakage or spillage of asphalt or bitumen. Refuse and solid waste from labour camps can also contaminate the soil. Contamination of soil during construction might be a

major long-term residual negative impact. Unwarranted disposal of construction spoil and debris will add to soil contamination. This contamination is likely to be carried over to water bodies in case of dumping being done near water body locations. However, by following mitigative measures such as maintenance of vehicles and machines and fuel refilling is carried out in a confined area can avoid contamination of soil to a great extend. The provision for oil interception chamber is suggested in Environmental Management Plan (EMP) for treating the waste water generated from vehicle washing, refilling and maintenance areas. Fuel storage and refilling sites should be kept away from cross drainage structures and important water bodies. All spoils shall be disposed off as desired and the site shall be fully cleaned before handing over. These measures are expected to minimise the impact on soil contamination. During the operation stage, soil pollution due to accidental vehicle spills or leaks is a low probability but potentially disastrous to the receiving environment, if they occur. These impacts can be long term and irreversible depending upon the extent of spill. The nearest fire service stations and facilities for risk management should be upgraded in order to meet the risks during the operation phase of highway.

4.6 Impacts on Water Resources Environment

4.6.1 Impact on Surface Water Quality

The proposed road is not expected to alter the existing water quality on a permanent basis. There are various water bodies, which cross the section of road including rivers, backwaters, lakes and drainage channels. Some impacts are anticipated on the water quality of these water bodies during the construction phase. Silt load in the streams and canals at the culvert and bridge locations may increase during construction and the spillage of hazardous chemicals during accidents may pollute the waters there by affecting the ecosystem. The issue of blocking of cross drainage should be taken care throughout the project stretch. Care needs to be taken during the construction of culverts and bridges across canals. In case of any water supply system at the down stream of the bridge

location, prior information should be made to the concerned department on the bridge construction across the river and the construction activities should avoid discharge of any hazardous chemicals in to the river water.

Degradation of water quality is also possible due to accidental discharges into watercourses from drainage of workers' camps and from spillage in vehicle parking and/or fuel and lubricant storage areas. However mitigation measures such as construction works close to the streams and other water bodies shall be avoided, especially during monsoon period, disposal of waste arising from the project activities as per norms of SPCB norms and collecting and storing of bituminous wastes and taking it to approved disposal sites will minimise the impact. During the operation phase, the possibility of degradation of water quality is very remote. The impact on the surface water quality during operation can be expected due to accidental spillage. However the probability of such accidents is minimal since enhancement of road safety measures such as improvement of curves other pedestrian facilities are taken care of in the design stage.

4.6.2 Impact on Ground Water Quality

No activities of the project construction or operation are expected to have any major impact on the ground water quality of the region and hence the impacts on the ground water quality are negligible.

4.7 Impacts on Air Environment

Vehicular emissions are one of the major sources of air quality impacts of highway projects. As the project envisages improvement of road conditions for smooth traffic flow, the project will have beneficial impact on air quality of the region during its operation. However, when viewed with respect to the existing ambient air quality or with respect to compliance of ambient air quality standards during the post improvement phase of the road stretch, due to the increase in the traffic volume, the impact on air quality along the project road is likely to be minor.

Impacts on air quality during the construction phase of the project will be considerable as the amount of work involved in improvement of the road is significant, but any possible impacts will be temporary. However, provision of adequate air pollution control equipment, like dust filters and measures like dust suppression by water sprinkling and planting of green belt may further help to significantly reduce the impact.

Emission of CO_2 and NO_X due to the combustion of diesel will be a principal cause of air pollution during the construction phase. The data on fuel utilization rates of units likely to be in operation during the road improvement are provided in Table 4.2.

Machines	Fuel Consumption (Litres/Hour)
Cement concrete mixer	7
Truck	8
Bulldozer	20
Grader	12
Roller	20
Dumpers & Tippers	18
Water Tanker	8
Paver	12

Table 4.2: Fuel Utilization Rates

Due to ground level temperature inversion at site during winter months, meteorological conditions after the sunset tend to become stable. The overall meteorological parameters thus constitute adverse conditions for dispersion of ground based air pollution emissions. Under adverse meteorological conditions, it may be possible that the NO_X standards (80 μ g/m³ for 24 hourly average) may be violated only if the construction work is carried out round the clock.

However, this scenario is not envisaged, as the construction is not proposed to be carried out throughout the day. There will also be a rise in PM levels due to construction activities. The PM standards, however, are not expected to be

exceeding the permissible limits as the background levels are very low and the particulates tend to settle during low wind and stable conditions. However, implementation of mitigation measures as given in the Environmental Management Plan (EMP) will mitigate or minimise these impacts.

After improvement of the road, the traffic is expected to move smoothly at higher designed speeds, which will assure lower emissions of gaseous pollutants, further improving air quality in the region and hence not expected to affect the air quality adversely. The rate of emissions of various types of vehicles is presented in **Table 4.3**. However, the extent of these impacts, at any given time will depend upon the rate of vehicular emission within a given stretch of the road; and the prevailing meteorological conditions. The impacts will have strong temporal dependence as both of these factors vary with time. The temporal dependence would have diurnal, seasonal, as well as long-term components.

Emissions	Emission Factors in gm/km/Vehicle					
1. For Diesel Vehicles Speed (km/hr)						
CO	12.53	9.40	7.52	6.27	5.37	4.70
2. For Petro	l Vehicles					
	Vehicle/ Car	2 Wheeler	3 Wheeler			
CO	2.72	2.0	4.0			

Table 4.3: Rate of vehicles emissions

4.7.1 Prediction of Carbon Monoxide (CO) Concentration Using CALINE 4

4.7.1.1 Dispersion Model along the Project Road.

The air quality model CALINE 4 was performed to predict the air quality after the road improvement. The methodology used for conducting the model is elaborated briefly in the following paragraphs.

4.7.1.2 Environmental Significance of Carbon Monoxide (CO)

Carbon Monoxide is colorless and odorless gas, chemically inert under normal conditions and has an estimated atmospheric mean life of about two and half months. CO is emitted by incomplete burning of fossil fuel. The National Ambient Air Quality Standard (CPCB) prescribes standard limit for CO in the ambient air as 2 mg/m³. At higher concentrations, i.e. above 5 mg/m³, it can seriously affect human aerobic metabolism, owing to its high affinity for hemoglobin and thus would affect the central nervous system, impairing a person's time -interval discrimination and brightness discrimination and over 10 mg/m³, concentration would result in cardiac, pulmonary functional changes / failure leading to death.

4.7.2 Approach and Methodology

Based on the traffic volume, land type and environmental setup, the project corridor has been divided into two sections. These sections are further divided in to three segments. For the CO dispersion study the project road is considered as Rural and Sub-urban and sections carrying various traffic volume.

4.7.2.1 CALINE 4 Dispersion model

The objective of the study is to predict CO concentration in the ambient air on project road by 2015, 2025 and 2035 using CALINE 4 dispersion model. The Ministry of Environment and Forests (MoEF) has made CO concentration study as mandatory and recommends CALINE 4 model for Highway projects.

CALINE 4 (Caltras, 1989) is a dispersion model that predicts CO impacts near roadways. CALINE 4 is a simple line source Gaussian plume dispersion model.

Terminology used in CALINE 4 models

The model is broadly divided into five screens such as Job Parameters, Link Geometry, Link Activity, Run Condition, and Receptor Positions

Job Parameters: contains general information that identifies the job, defines general modeling parameters, and sets the units (feet or meters) that will be used to input data on the Link Geometry and Receptor Positions Screens.

Run Type: determine averaging times (for CO concentrations) and how the hourly average wind angle(s) will be determined. Most common is the "worst-case wind angle" run type to estimate 1-hour average CO concentration.

Aerodynamic Roughness Coefficient: determine the amount of local air turbulence that affects plume spreading. CALINE 4 offers the following 4 choices for aerodynamic roughness Coefficient:

- Rural: Roughness Coefficient = 10 cm
- Suburban: Roughness Coefficient = 100 cm
- Central Business District: Roughness Coefficient = 400 cm

Link/Receptor Geometry Units: the geometry of the roadway links and receptor positions are defined in meters. Meteorological inputs always require inputs with metric units.

Emission factors are always defined in terms of grams / mile. Emission Factor is arrived using standard values prescribed by Society of Indian Automobile Manufactures

Altitude above Sea Level: Define the altitude above mean sea level. This input is used to determine the rate of plume spreading. It does not affect the Link Geometry or Receptor Positions.

Link Geometry: defines the roadway network to be modeled. Each row in the matrix defines a single link. Up to 20 links may be entered. Links are defined as straight-line segments. The distance between the centerline of the curved

roadway, and the straight-line link should be no greater than 3 meters. For bridges, link length must be grater than roadway width.

Link Type: 5 choices available such as At Grade, Fill, Depressed, Bridge and Parking lot. In this particular model study At Grade and Bridge link type are used. Except bridge links all other links are assumed to be At grade type.

Endpoint Coordinates: The endpoint coordinates, (x1, y1) and (x2, y2), define the positions of link endpoints. Link geometry and receptor positions are defined with a Consistent Cartesian coordinate system.

Link Height: For all link types except bridges, Link Height represents the height of the link above the surrounding terrain.

Mixing Zone Width: Mixing zone is defined as the width of the roadway, plus 3 m on either side. The minimum allowable value is 10 m, or 32.81 feet. (Width of Roadway including shoulders)

Link Activity: defines the level of traffic and auto emission rate observed at each link.

Traffic Volume: The hourly traffic volume anticipated to travel on each link, in units of vehicles per hour.

Emission Factor: The weighted average emission rate of the local vehicle fleet, expressed in terms of grams / mile per vehicle.

The Run Conditions screen contains the meteorological parameters needed to run CALINE4.

Wind Speed: Expressed in meters per second.

Wind Direction: The direction the wind is blowing from, measured clockwise in degrees from the north.

Wind Direction Standard Deviation: The statistical standard deviation of the Wind Direction.

Atmospheric Stability Class: A measure of the turbulence of the atmosphere. Values 1 through 7 correspond to the standard definitions for stability class A through E. Stability class E (or 7) represents the most stable conditions.

Mixing Height: The altitude to which thermal turbulence occurs due to solar heating of the ground, Standard mixing height is assumed as 1000 meter.

Ambient Pollutant Concentration: This measure reflects the pre-existing background level of Carbon Monoxide, expressed in parts per million (ppm).

Ambient Temperature: The ambient air temperature significantly affects vehicle CO emissions. A temperature that reflects wintertime conditions should be selected, expressed in degrees Celsius.

The Receptor Positions Screen: contains the data inputs for all receptor positions, and also displays a diagram of the link geometry and receptor positions. Receptors should be defined with the same Cartesian coordinate system and units of measure as the link geometry.

Receptor Height-Z: coordinate standard 1.8 m assumed.

Averaging Interval- 1-hour average CO concentration at the receptors

For estimating the project, that is vehicles going to ply on Peripheral Ring Road (PRR) on the base year, the entire project road is sub-divided into 3 sections.

M/s Ramky Enviro Engineers Ltd, Hyderabad

- Section-I: Hosur road NH-07 Old Madras Road NH-04
- Section-II: Old Madras Road NH-04 Bellary road NH-07
- Section-III: Bellary road NH-07 -Tumkur road NH-04

The traffic is estimated on 2 steps, (i) the diversion of through traffic from the arterials to the proposed Peripheral Ring Road (PRR), and also (ii) the generation of traffic from the nearby areas or settlements to Peripheral Ring Road (PRR), The **Table 4-4** gives the estimated traffic on the proposed Peripheral Ring Road (PRR) at the base year.

Table – 4.4: Estimated Traffic on the proposed Peripheral Ring Road (PRR)

Section	Direction of Traffic	Traffic in the order of Trucks + Cars + TW (Vehicles/day)
Section-I	Hosur Road to OMR	387+2637+2143
	OMR to Hosur Road	442+2945+2143
Section-II	OMR to Bellary Road	519+1920+1870
	Bellary Rd to OMR	204+1953+1870
Section-III	Bellary Rd to Tumkur	254+1540+1200
	Tumkur to Bellary Rd	393+1399+1200

4.7.2.2 Results and Inferences

CALINE 4 CO dispersion model software was run by using data on link geometry, traffic volume and environmental receptors given in the table above. The output CO results at specified locations along the project road for projected years 2015, 2025 and 2035 respectively are presented in **Table 4.5** below.

4.7.2.3 Conclusion

The predicted CO concentrations including ambient level at all locations are well within the National Ambient Air Quality standards (NAAQ) for the projected years 2015, 2025 and 2035 are presented in **Table 4.6** below.

Segments	Chainage Road	Aerodynamic Roughness		ic Volum AD (VPH		Ambient 'CO'	Average		ission Fa (gm/Mile)		Avg. Alt. above	Mixing Zone
Segments	Chainage Road	Coefficient	2015	2025	2035	Conc. (PPM)	Temp [°] C	2015	2025	2035	MSL (meter)	Width (meter)
Section-I	Hosur Road to OMR	Rural	5167	5425	5697	1.2	24- 34	4.2	4.0	3.8	167	68
	OMR to Hosur Road	Rural	5530	5807	6097	1.6	24- 34	3.9	3.7	3.5	167	68
Section-I	OMR to Bellary Road	Rural	4309	4524	4751	1.5	24- 34	4.8	4.6	4.4	167	68
	Bellary Rd to OMR	Rural	3823	4014	4215	1.2	24- 34	4.4	4.2	4.0	167	68
Section-I	Bellary Rd to Tumkur	Rural	2994	3144	3301	1.0	24- 34	4.5	4.3	4.1	167	68
	Tumkur to Bellary Rd	Rural	2992	3142	3299	1.8	24- 34	4.3	4.2	4.0	167	68

 Table 4.5: CO dispersion study - (Rural and Sub-urban and sections carrying various traffic volume)

Table 4.6: Predicted CO Concentrations for Years 2015, 2025, and 2035

Chainage	Name of Receptor (Ambient Air Quality Monitoring Location) (Interchanges/Road and Rail crossings)	Distance from Center Line of Road in meters	Area Type	Predicted 'CO' Conc. in μg/m ³ Including Ambient level for year 2015	Predicted 'CO' Conc. in μg/m ³ Including Ambient level for year 2025	Predicted 'CO' Conc. in µg/m ³ Including Ambient level for year 2035	NAAQ Standard for CO in μg/m ³ for Residential, Rural & Other areas	Remarks
Section-I	Hosur Road to OMR	50	Residential/Rural /Other	3476	3650	3832	4000	Within Limit
	OMR to Hosur Road	50	Residential/Rural	3276	3440	3612	4000	Within Limit
Section-2	OMR to Bellary Road	50	/Other	3276	3440	3612	4000	Within Limit
	Bellary Rd to OMR	50	Residential/Rural	3176	3335	3502	4000	Within Limit
Section-3	Bellary Rd to Tumkur	50	/Other	2987	3136	3293	4000	Within Limit
	Tumkur to Bellary Rd	50	Residential/Rural	2842	2984	3133	4000	Within Limit

4.8 Impacts on Ambient Noise Level

During construction phase of the road, the major sources of noise pollution are vehicles transporting the construction material to the construction yard and the noise generating activities at the yard itself. Mixing, casting and material movement are primary noise generating activities in the yard and will be uniformly distributed over the entire construction period. Construction activities are anticipated to produce noise levels in the range of 80 - 95 dB (A). The construction equipment will have high noise levels, which can affect the personnel operating the machines. Use of proper Personal Protective Equipment (PPE) such as earmuffs will mitigate any adverse impact of the noise generated by such equipment.

The noise levels in the working environment are compared with the standards prescribed by Occupational Safety and Health Administration (OSHA-USA) which in-turn are being enforced by Government of India through model rules framed under the Factories Act. The acceptable limit for each shift being of 8-hour duration; the equivalent noise level exposure during the shift is 90 dB (A). Hence, noise generated due to various activities in the construction camps may affect workers, if equivalent 8-hour exposure is more than the safety limit. ACGIH (American Conference of Government Industrial Hygienists) proposed an 8-hour Leq limit of 85 dB (A). Exposure to impulses or impact noise should not exceed 140 dB (A) (Peak acoustic pressure). Exposure to 10,000 impulses of 120 dB (A) is permissible per day. The noise likely to be generated during excavation, loading and transportation of material will be in the range of 90 to 105 dB (A) and this will occur only when all the equipment operate together and simultaneously. This is however, is a remote possibility. The workers in general are likely to be exposed to an equivalent noise level of 80 to 90 dB (A) in an 8-hour shift, for which all statutory precautions should be taken into consideration. However, careful planning of machinery selection, operations and scheduling of operations can reduce these levels. As the project road passes through populated areas at villages and urban areas and several sensitive receptors. To avoid significant

impacts on human health, it is recommended to avoid construction work at these sections during night times and ensure that only minimum required machinery is deployed on the site. Uninterrupted movement of heavy and light vehicles at high speeds may cause increase in ambient noise levels on the project road. It may have negative environmental impacts on the sensitive receptors close to the project road.

With the proposed improvement of the project road, the residential areas along the stretch on either side are likely to experience day and night-time noise levels. These noise levels significantly vary with vehicle speed as presented in **Table 4.7.** However, the proposed avenue plantation is expected to minimise the impacts on the immediate influence area of the project road.

Speed (km/hr)		Noise Levels in dB (A) at 15 m						
	Cars*	Trucks	Buses	2/3 Wheelers				
40	59.00	76.00	76.00	61.00				
50	63.00	80.00	80.00	66.00				
60	65.00	81.00	81.00	68.00				
70	68.00	81.50	81.50	70.00				
80	70.00	82.00	82.00	72.00				
90	72.00	83.00	83.00	74.00				
100	74.00	83.50	83.50	71.00				

Table 4.7: Variation of noise level with vehicle speed

The project road has been divided into three sections based on traffic volume. The results obtained for projected traffic for years 2015, 2025 and 2035 are presented in **Table 4.8** and **Table 4.9**

4.8.1 Conclusions

4.8.1.1 Without Barrier

Noise levels during day-time and night-time at all the sensitive receptors considered are exceeding the CPCB standards for the projected years 2015, 2025, and 2035.

4.8.1.2 With Barrier

Noise levels during day-time and night-time at all the sensitive receptors considered are exceeding the CPCB standards for the projected years 2015, 2025, and 2035. It is revealed from the modeling results for the project influencing area for all the projected years that, noise levels without barrier condition is comparatively higher than with barrier condition, so suitable mitigation measures such as construction of minimum 6m high noise barrier (3m concrete wall and plantation of Ashok tree at 1.5m interval behind the wall)) along the Sensitive receptor locations. For tree plantation to be effective atleast 3-4 rows of trees need to be planted.

Chainage	Sensitive Receptors	Distance from CL	Predicted Noise leve for Day Time					edicted N for Nigl	CPCB Standard for	
	Receptors					Day Time				Night Time
			2015	2025	2035	50	2015	2025	2035	40
Section 1	Hosur Road to OMR	35m towards LHS	70	71	72	50	63	64	65	40
	OMR to Hosur Road	45m towards LHS	71	72	73	50	64	65	66	40
Section 2	OMR to Bellary Road	35m towards LHS	69	70	71	50	62	63	64	40
	Bellary Rd to OMR	45m towards LHS	69	69	70	50	62	62	63	40
Section 3	Bellary Rd to Tumkur	35m towards LHS	70	70	71	50	63	63	64	40
	Tumkur to Bellary Rd	45m towards LHS	71	72	73	50	64	65	65	40

Table 4.8: Predicted Noise Levels at Sensitive Receptors without Barrier Condition

 Table
 4.9: Predicted Noise Levels at Sensitive Receptors with Barrier condition

Chainage	Sensitive	Distance	Predicted Noise levels for Day Time		CPCB Standard for	Predicted Noise levels for Night Time			CPCB Standard for	
	Receptors	from CL	2015	2025	2035	Day Time	2015	2025	2035	Night Time
Section 1	Hosur Road to OMR	35m towards LHS	56	57	57	50	51	51	52	40
	OMR to Hosur Road	45m towards LHS	57	58	58	50	51	52	52	40
Section 2	OMR to Bellary Road	35m towards LHS	56	56	57	50	50	50	51	40
	Bellary Rd to OMR	45m towards LHS	55	55	56	50	49	50	50	40
Section 3	Bellary Rd to Tumkur	35m towards LHS	56	56	57	50	50	51	51	40
	Tumkur to Bellary Rd	45m towards LHS	57	58	58	50	51	52	52	40

4.9 Solid Waste Impacts

Various construction activities such as demolition of structures, cutting of earth and rock mass for widening in some sections of project road, scarification of existing pavement will results to generation of huge quantity of construction waste. Further, substantial amount of domestic waste will also generate from workers camps. Improper disposal of these wastes may obstruct water flow resulting in reduction in water carrying capacity of the water body. Improper collection waste from construction site may leads to traffic congestion and inconvenience for commuters. No impact is envisaged during operation phase of the project.

Mitigation measures

Waste shall be collected, stored and taken to approve disposal sites as per prevailing disposal norms.

- Earth, stone or any other construction material should be properly disposed off
- Construction waste and other materials should be cleared immediately after completing the work so that traffic can move without any constraint.
- Domestic solid waste generated from workers camps shall collected in waste bins and disposed as per the guidelines of Municipal Solid Waste (Management and Handling) Rules, 2000.
- Contractor should strictly adher to other clauses and guidelines detailed out in the EMAP for debris disposal and waste disposal

4.10 Impacts on Fauna, Flora and Ecological Environment

4.10.1 Impact on Fauna and Flora

The increased activities of vehicle movement disturb the sensitive movements of fauna. The impacts are expected to be more severe during the times of accidents of vehicles carrying hazardous chemicals. In the absence of proper accident management mechanisms, such accidents will be very hazardous to flora and fauna of the region.

Initial portion of the Highway is along protected forest areas. From the site visits and discussion with officials it is inferred that there are no noticeable habitats or wild or endangered animal habitats along close vicinity of the project road. This can be inferred due to the operation of an existing road along this stretch. Further, noise due to construction machineries and increased vehicular movement for raw material transportation for road construction will disturb the wild life along the area during construction phase. Due care should be taken in the construction stage that human activities should be completely restricted to the proposed RoW such that there should not be any human ingress in to forest areas for poaching of animals / any other items. It was observed that that there is no endangered flora / fauna in the project influence area and hence the impact of the loss of vegetation will not be very severe.

Cutting of a large number of avenue trees is envisaged along both sides of the project road. As present small, medium and large trees have to be cut down along the proposed RoW. However, compensatory avenue plantation with thrice the number of trees to be cut is proposed as a part of Environmental Management Plan. The tress lost in the forest areas will be compensated with compensatory afforestation plan in equal area of land to be acquired in forest areas. Site specific indigenous tree species have been selected for compensatory afforestation and will be implemented through State Forest Department. The tree species that can be replanted in the project

4.10.2 Removal of Trees and Landscaping

Tree cutting is envisaged during construction of road. Broad guidelines or Mitigation measures are listed below

Following measures can be taken for the mitigation of impacts due to the removal of trees:

M/s Ramky Enviro Engineers Ltd, Hyderabad

Double the number of plants should be planted for each tree felled/removed as a part of compensatory plantation. The compensatory plantation should be done in consultation with the forest department of the area. Adequate care of the compensatory plantation should be taken up so as to achieve over 90% survival rate.

Landscaping should be done with a lag of 3 to 4 months from the start of the work on any section. The section should be deemed to be complete when the landscaping is over.

• Survival rate of plants must be included in the contract specifications so as to ensure that the compensatory plantation achieves the objective of compensating lost trees.

• Indigenous and endemic tree species suitable for the area should be planted at the onset of monsoon season. The plants should be provided with adequate protection from animals and proper monitoring should be carried out to ensure their growth.

A study on the local flora and existing avenue trees has been carried out as part of the field surveys to enable a choice of the suitable species for avenue trees. The criteria for selection of species for choice as avenue tree is that the species is indigenous and suited to the soil and rainfall of the area, and hardy and needs no attention after the maintenance period. The lists of some of the species that are suitable for roadside plantation are given in **Table 4.10**.

Plant Species - Trees	Common Names	Physical Description	Growth	HT
Azardirecta Indica	Bevu Neem	Evergreen foliage/medicinal/scented	Moderate	12M(40ft)
Tecoma splendons	Gante hoovu	Evergreen foliage & flowering tree	Moderate	7M(23ft)
Roystonea regia	Royal palm	Evergreen	Fast	12M(40ft)
Tabebuia rosea		Evergreen	Fast	15M(50ft)
Michelia champak a	Sampige	Evergreen, foliage & flowering tree	Moderate	12M(40ft)
Jacaranda mimosifolia	Neeli padri	Evergreen, foliage & flowering tree	Moderate	15M(50ft)
Grevillea robusta	Silver oak	Evergreen, foliage tree	Moderate	10M(33ft)
Plumeria alba/rubra	Temple tree	Evergreen, foliage & flowering tree	Slow	7M(23ft)
Pongamia pinnata	Honge	Evergreen, foliage / scented/shady	Moderate	10M(33ft)
Nyentanthus arbor trissus	Parijatha	Evergreen, Windbreak	Moderate	12M(40ft)
Delonix regia	Gulmohar	Evergreen, foliage & flowering tree	Moderate	7M(23ft)
Millintonia hortensis	Akash mallige	Evergreen, foliage & flowering tree	Fast	7M(23ft)
Phyllanthus emblica	Bettada Nellikaayi	Evergreen, foliage fruit bearing	Moderate	7M(23ft)
Spathodia campunalata	Neeru kaayi	Evergreen, foliage & flowering tree	Moderate	10M(33ft)
Achrus sapota	Sapota	Evergreen, foliage, fruit bearing	Moderate	10M(33ft)
Cassia fistula	Kakke mara	Evergreen, foliage & flowering tree	Moderate	7M(23ft)
Casuarinas equisitifolia		Wind break	Fast	12M(40ft)
Ziziphus jujube	Elachimara	Evergreen & fruit shrub	Moderate	
Syzygium cumini	Nerale	Evergreen, fruit bearing tree	Moderate	10M(33ft)
Syzijium jambos	Pannerale	Evergreen, fruit bearing tree	Moderate	10M(33ft)
Tabebuia rosea		Flowering tree	Moderate	7M(23ft)
Tabebuia avalanidae		Flowering tree	Moderate	7M(23ft)
Oscimum Sanctum	Tulasi	Scented		
Psidium guava	Sibekaayi	Evergreen, fruit bearing tree	Moderate	7M(23ft)
Nerium oleanders	Kanagalu hoova	Evergreen, flowering shrub	Moderate	

CHAPTER 5 ANALYSIS OF ALTERNATIVES

5.1 Site Selection

The proposed Peripheral Ring Road (PRR) is being developed to divert the Intercity Traffic through Peripheral Ring Road (PRR) around the Bangalore City beyond the existing Outer Ring Road (ORR).

The Peripheral Ring Road (PRR) is connected to outer to Outer Ring Road (ORR) at important destinations, major localities, National Highways. The composition of vehicles that are plying on Outer Ring Road (ORR) comprises of various vehicular categories including personalized vehicles like cars, jeeps, vans, two wheelers, auto rickshaws, commercial vehicles, trucks and slow moving vehicles like pedal cycles.

Bangalore Development Authority (BDA) has been entrusted with the responsibility to take up the development of Peripheral Ring Road (PRR) in phases for a smooth flow of traffic, to reduce the traffic congestion, pollution intensity cum travel time and there is no proposal of other alternative to it.

CHAPTER 6 ENVIRONMENTAL MONITORING PROGRAM

6.1 Environmental Monitoring

Environmental Monitoring Program is to prevent environmental damage and ensure mitigation measures to various environmental parameters that are being affected. The adverse environmental impacts identified during the EIA process of the proposed project may increase further during the construction as well as during post-construction phase. Monitoring of environmental factors and constraints will enable agencies to identify the changes in the environmental impacts at particular locations, application of mitigative measures and utilization of standard design guidelines for finalization of alignment design. Monitoring will also ensure that actions taken are in accordance with the construction contract and specifications. It provides a basis for evaluating the efficiency of mitigation and enhancement measures, and suggests further actions needed to be taken to achieve the desired effect.

To ensure the effective implementation of the Environmental Management Plan (EMP), an effective monitoring programme has to be designed.

6.2 Objectives

The broad objectives of the monitoring plan are

- Performance evaluation of mitigation measures proposed.
- Evaluating the adequacy of environmental impact assessment
- Suggesting improvements in management plan, if any
- Enhancing the environmental quality
- Satisfying the legal and community obligations

6.3 Responsibilities for monitoring

The responsibility for monitoring the Environmental Management Plan (EMP) rest with the Environmental management in charge of BDA. Mitigation and enhancement measures adopted in final design will be exactly identified under the bill of quantity so that performance and completion is readily documented.

The BDA will visually assess the progress of Environmental Management and the work of contractors. If the level of impact is determined to be high, further monitoring will be done by a recognized A category laboratory of concern SPCB and assessed for the verification of the increased or decreased emission level and pollutants along the project road, and if found more appropriate control measures would be exercised.

6.4 Performance indicators

In order to evaluate the effectiveness of Environmental Management Plan (EMP) at project level, certain physical, biological and social components identified. The components analysed based on project specific conditions and data generated. The key quality components include air quality, water quality, noise levels around sensitive locations and plantation/re plantation.

6.5 Routine Monitoring

During the construction and post-construction phase, ambient air quality, water quality, effluent and noise level will be monitored as and when required depending up on the type, nature and duration of the project using standardized monitoring methodologies and laboratory testing facilities/techniques.

6.6 Site Selection

Monitoring stations have been identified based on observation/site conditions such as nature of construction, diversions, congestion, parking places, bus/taxi stands, number and frequency of vehicles, sources of pollutants (industrial/commercial/residential),environmental features and existence of sensitive and critical areas i.e., educational institutions, hospitals, archaeological / cultural sites. The frequency and duration of testing/sampling of air, water, noise

levels and effluent quality with in the ROW is to be fixed as per allotted time frame of the project and requirements of SPCB/CPCB and MoEF.

6.7 Methodology

Standard methodology as described in manuals, guidelines etc. is to be followed as outlined in **Table 6.1**.

S. No	Parameters to be monitored	References
1	Ambient Air Quality	
	PM _{2.5}	As per CPCB Standards
	PM 10	
	NO _X	
	SO ₂	
2	Water and Effluent	
	Surface water	As per APHA and CPCB Standards
	Ground water	-
3	Noise level	As per CPCB Standards

 Table 6.1: Testing of Environmental parameters and Standard protocol

6.8 Ambient Air Quality Monitoring (AAQM)

The air quality parameters i.e. PM_{10} & $PM_{2.5}$, SO_2 , & NO_X will be regularly monitored at designated locations and analyzed in accordance with the National Ambient Air Quality Standards (NAAQS) given in **Table 6.2.** The location, duration and pollution parameters to be monitored and the responsible institutional arrangements are detailed out in environmental monitoring plan.

Table 6.2: National Ambient Air Quality Standards

			VII)		
			Concentration	n in Ambient Air	
S. No	Pollutant	Time weighted average	Industrial, residential, rural and other area	Ecological sensitive area (Notify by Central Govt.)	Method of Measurement
1	Sulphur Dioxide	Annual *	50	20	Improved West & Gaeke Method
	SO ₂ µg/m ³	24 hrs**	80	80	Ultraviolet Fluorescence
2	Nitrogen Dioxide	Annual*	40	30	Modified Jacob & Hochheiser (Na-Arsenic)
	NO ₂ µg/m ³	24 hrs**	80	80	Chemiluminescence
3	Particulate Matter	Annual *	60	60	Gravimetric
	Size Less Than 10 µm Or PM ₁₀ µg/m ³	24 hrs**	100	100	TOEM Beta Attenuation
4	Particulate Matter	Annual *	40	40	Gravimetric
	Size less Than 2.5 µm Or PM _{2.5} µg/m ³	24 hours**	60	60	TOEM Beta Attenuation
5	Ozone O ₃ µg/m ³	8 Hour**	100	100	UV Photometric
		1 Hour**	180	180	Chemiluminescence Chemical Method
6	Lead Pb µg/m ³	Annual *	0.50	0.50	AAS/Icp method after sampling on EPM 2000 or equivalent filter paper.
		24 hours**	1.0	1.0	ED XRF using Teflon Filter
7	Carbon Monoxide CO mg/m ³	8 Hours**	02	02	Non Dispersive Infra Red (NDIR)
		1 Hour**	04	04	Spectroscopy
8	Ammonia NH ₃	Annual *	100	100	Chemiluminescence
	µg/m ³	24 hrs**	400	400	Indophenol Blue Method
9	Benzene (C ₆ H ₆) µg/m ³	Annual*	05	05	Gas Chromatography based Continuous Analyzer Adsorption and desorption followed by GC analysis
10	Benzo() Pyrene (BaP) Particulate Phase only ng/m ³	Annual*	01	01	Solvent Extraction followed by HPLC/GC analysis
11	Arsenic As ng/m ³	Annual*	06	06	AAS/ICP method after sampling on EPM 2000 or equivalent filter paper
12	Nickel Ni ng/m ³	Annual*	20	20	AAS/ICP method after sampling on EPM 2000 or equivalent filter paper

National Ambient Air Quality Standards (Ministry of Environment & Forests, Notification, New Delhi 16th November 2009, Schedule

Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

** 24hourly or 8 hourly or 1 hourly monitoring values, as applicable shall be complied with 98% of the time in a year 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

NOTE: Whenever and Wherever monitoring results on two consecutive days of monitoring exceed the limits specifies above for the respective category, it shall be considered adequate reason to institute regular or continuous and further investigation.

6.9 Water Quality Monitoring (WQM)

Water quality parameters such as pH, Dissolved Oxygen, Total Dissolved Solids, Phosphate, Calcium, Sulphate, Chlorides, Iron etc., will be monitored at all identified locations during construction stage as per standards prescribed by the CPCB and the water specifications presented in **Table 6.3**. The location, duration and pollution parameters to be monitored and the responsible institutional arrangements are detailed out in environmental monitoring plan given in **Table 6.4**.

S. No.	Designated Best Use	Class of Water	Criteria
1	Drinking Water source (with conventional treatment)	A	 Total Coliform MPN/100 ml shall be 50 or less pH between 6.5 to 8.5 Dissolved Oxygen 6 mg / L or more Biochemical Oxygen demand (BOD) 5 days 200C 2 mg/L or less
2	Outdoor bathing (organised)	В	 Total Coliform MPN/100 ml shall be 500 or less pH between 6.5 to 8.5 Dissolved Oxygen 5 mg / L or more Biochemical Oxygen demand (BOD) 5 days 200C 3 mg/L or less
3	Drinking Water source (without conventional treatment)	С	 Total Coliform MPN/100 ml shall be 5000 or less pH between 6 to 9 Dissolved Oxygen 4 mg / L or more Biochemical Oxygen demand (BOD) 5 days 200C 3 mg/L or less
4	Propagation of Wildlife	D	 pH between 6.5 to 8.5 for fisheries Dissolved Oxygen 4 mg / L or more Free Ammonia (as N) 1.2 mg/L or less
5	Irrigation, Industrial Cooling, Controlled Waste	Е	 pH between 6.0 to 8.5 Electrical Conductivity at 250C µmhos/cm Max. 2250 Sodium absorption rations Max. 26 Boron, Max.2 mg/L

Table 6.3: Primary Water Quality Standards

Ref: CPCB (1999). Bio mapping of rivers, Parivesh New Letter, 5 (iv), Central Pollution Control Board, Delhi, PP.20.

S. No.	Substance / Characteristics	Requirement (Acceptable limit)	Permissible limit in the absence of alternate source	Methods of Test (ref. To Part of IS 3025)	Remarks
1	Colour, Hazen Units, Max.	5	15	Part 4	Extended to 15 only, if toxic substances are not suspected in absence of alternate sources
2	Odour	Agreeable	Agreeable	Parts 5	(a) Test cold and when heated.(b) Test at several dilution
3	PH value	6.5 to 8.5	No relaxation	Part 11	
4	Taste	Agreeable	Agreeable	Part 7 & 8	Test to be conducted only after safety has been established
5	Turbidity NTU, Max.	1	5	Part 10	
6	Total Dissolved solids, mg/l Max.	500	2000	Part 16	
7	Total hardness (as CaCo3) mg/l, Max.	200	600	3025 (part 21): 1983	
8	Iron (as Fe) mg /I Max.	0.3	No relaxation	3025 (part 21): 1983	Total concentration of Manganese (as Mn) and iron (as Fe) shall not exceed 0.3mg/l
9	Chlorides (as CI) mg/l Max.	250	1000	3025 (part 32): 1988	
10	Residual, free chloride, mg/l Min.	0.2	1	3025 (part 26): 1986	To be applicable only when water is chlorinated. Tested at consumer end. When protection against viral

Table 6.4: Indian Standard - Drinking Water Specifications IS 10500: 2012

S. No.	Substance / Characteristics	Requirement (Acceptable limit)	Permissible limit in the absence of alternate source	Methods of Test (ref. To Part of IS 3025)	Remarks
					infection is required, it should be Min. 0.5 mg/1
11	Calcium (as Ca) mg/l Max.	75	200	IS 3025 (Part 40)	
12	Magnesium (as Mg) mg/l, Max.	30	100	IS 3025 (Part 46)	
13	Copper (as Cu) mg/l Max.	0.05	1.5	IS 3025 (Part 42)	
14	Manganese (as Mn) mg/l, Max.	0.1	0.3	IS 3025 (Part 59)	Total concentration of Manganese (as Mn) and iron (as Fe) shall not exceed 0.3mg/l
15	Sulphate (as 200 So2), mg/l, Max.	200	400	IS 3025 (Part 24)	May be extended up to 400 provided (as Mg) does not exceed 30
16	Nitrate (as No2) mg/l, Max.	45	No relaxation	IS 3025 (Part 34)	To be tested when pollution is suspected
17	Fluoride (as F) mg/l, Max.	1	1.5	IS 3025 (Part 60)	To be tested when pollution is suspected
18	Phenolic compounds (as C6H5OH) mg/l, Max.	0.001	0.002	IS 3025 (Part 43)	To be tested when pollution is suspected
19	Mercury (as Hg) mg/l, Max.	0.001	No relaxation	IS 3025 (Part 48) / Mercury analyzer	To be tested when pollution is suspected
20	Cadmium (as cd), mg/l, Max.	0.003	No relaxation	IS 3025 (Part 41)	To be tested when pollution is suspected
21	Selenium, (as Se). mg/l, Max.	0.01	No relaxation	IS 3025 (Part 56) or IS 15303	To be tested when pollution is suspected
22	Arsenic (As) mg/l, Max.	0.01	0.05	IS 3025 (part 37)	To be tested when pollution is suspected

S. No.	Substance / Characteristics	Requirement (Acceptable limit)	Permissible limit in the absence of alternate source	Methods of Test (ref. To Part of IS 3025)	Remarks	
23	Cyanide (as CN) mg/l, Max.	0.05	No relaxation	IS 3025 (part 27)	To be tested when pollution is suspected	
24	Lead (as Pb), mg/l, Max.	0.01	No relaxation	IS 3025 (Part 47)	To be tested when pollution is suspected	
25	Zinc (as Zn) mg/l, Max.	5	15	IS 3025 (Part 49)	-	
26	Anionic detergents (as MBAS) mg/l, Max.	0.2	1.0	Annex K of IS 13428	-	
27	Total chromium (as Cr), mg/l, Max.	0.05	No relaxation	IS 3025 (Part 52)	-	
28	Poly nuclear aromatic hydra carbons (as PAH) mg/l, Max.	0.0001	No relaxation	APHA 6440	-	
29	Mineral oil mg/l, Max.	0.5	No relaxation	Clause 6 of IS 3025 — (Part 39) Infrared	-	
30	Pesticides mg/1, Max.	Absent	No relaxation	-	-	
	Radioactive material					
31	Alpha emitters bq/l, Max.	0.1	No relaxation	Part 2	-	
	Beta emitters bq/l, Max.	1.0	No relaxation	Part 1	-	
32	Aluminium (as Al) mg/l, Max.	0.03	0.2	IS 3025 (Part 55)	-	
33	Boron mg/l, Max.	0.5	1.0	29 of 3029:1964	-	

Source: Indian Standard Drinking Water Specification – IS 10500, 2012

6.10 Noise Quality Monitoring

The ambient noise levels will be monitored at already designated locations in accordance with the Ambient Noise Quality Standards given in **Table 6.5** the location, duration and noise pollution parameters to be monitored and the responsible institutional arrangements are detailed out in environmental monitoring plan

Catagory of Aron / Zono	Limits in dB(A) Leq				
Category of Area / Zone	Day Time	Night Time			
Industrial area	75	70			
Commercial area	65	55			
Residential area	55	45			
Silence Zone	50	40			

Table 6.5 : National Ambient Noise Quality Standards

Note: (1) Day time shall mean from 6.00 a.m. to 10.00 p.m. (2) Night time shall mean from 10.00 p.m. to 6.00 a.m. (3) Silence zone is an area comprising not less than 100 metres around hospitals, educational institutions, courts, religious places or any other area which is declared as such by the competent authority (4) Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority.

6.11 Environmental Monitoring Plan

Monitoring plan for various performance indicators at construction and monitoring stage is summarized in **Table 6.6**

Environmental	Project	Monitoring						Institutional Re	esponsibility
Component	Stage	Parameters	Special Guidance	Standards	Location	Frequency	Duration	Implementation	Supervision
	Construction Stage	PM ₁₀ & PM _{2.5} SO ₂ , NO _X , Fugitive emissions from Hot mix plants	Respirable Dust sampler to be located 50 m from the plant in the downwind direction. Use method specified by CPCB for analysis	Air (Preventio n and Control of Pollution) Rules, CPCB	Hot mix Plant / Batching Plant, Quarry sites	Three seasons annually	Continuo us 24 hours / or for 1 full working day	Contractor through approved monitoring agency	Site Engineer
Air	Construction Stage	PM ₁₀ & PM _{2.5}	Respirable Dust sampler to be located 40 m from the earthworks site downwind direction. Use method specified by CPCB for analysis	Air (Preventio n and Control of Pollution) Rules, CPCB,	Stretch of the road where constructio n is in progress near settlement / habitation area	Moves with progress of constructio n	Continuo us 24 hours/or for 1 full working day	Contractor through approved monitoring agency	Site Engineer,

Table 6.6: Environmental Monitoring Plan

Environmental	Project	Monitoring					Institutional Responsibility		
Component	Stage	Parameters	Special Guidance	Standards	Location	Frequency	Duration	Implementation	Supervision
Water Quality	Construction Stage	pH, TSS, TDS, Turbidity, CI, Hardness, Coliform, Fe, Fluorides BOD, COD, Oil & Grease and (initially) NO3,	Grab sample collected from source and analyse as per Standard Methods for Examinatio n of Water and Wastewater	Water quality standards by CPCB	At locations identified by the engineer	End of summer / before the onset of monsoon every year	-	Contractor through approved monitoring agency	Site Engineer
	Operation Stage	pH, TSS, TDS, Turbidity, Oil & Grease Cl, Hardness, Coliform, Fe, Fluorides BOD, COD	Grab sample collected from source and analyse as per Standard Methods for Examinatio n of Water and Wastewater	Water quality standards by CPCB	At locations identified by the engineer	End of summer / before the onset of monsoon in the first year	-	Engineer	Site Engineer

Environmental	Project	Monitoring						Institutional Responsibility	
Component	Stage	Parameters	Special Guidance	Standards	Location	Frequency	Duration	Implementation	Supervision
	Construction	Noise levels on dB (A) scale	Free field at 1 m from the equipment whose noise levels are being determined.	Noise standards by CPCB	At constructio n yards	As required by the Engineer	Readings to be taken at 15 seconds interval for 15 minutes every hour and then averaged	Contractor through approved monitoring agency	Site Engineer
Noise Levels	Stage	Noise levels on dB (A) scale	Equivalent Noise levels using an integrated noise level meter kept at a distance of 15 m from edge of Pavement within settlements	Noise standards by CPCB	As directed by the Engineer (At maximum 20 locations)	Thrice a year	Readings to be taken at 15 seconds interval for 15 minutes every hour and then averaged.	Contractor through approved monitoring agency	Site Engineer
Soil Erosion	Construction Stage	Turbidity in Storm Water Silt load in water courses		Water quality standards	At locations identified by the engineer	Pre- monsoon and post- monsoon seasons		Supervision Consultant	Site Engineer

Environmental	Project	Monito			oring			Institutional Responsibility	
Component	Stage	Parameters	Special Guidance	Standards	Location	Frequency	Duration	Implementation	Supervision
Construction Sites and Construction Camps	Construction Stage	Monitoring of: Storage Area Drainage arrangement S Sanitation in Construction Camps	The parameters mentioned are further elaborated in the reporting formats. These are to be checked for adequacy.	To the satisfaction of the standards	As storage area and constructio n camps	Quarterly in the constructio n stage		Engineer	Site Engineer

6.12 Environmental Management Division (EMD)

The Bangalore Development Authority (BDA) is responsible for implementation of Environmental Management Plan (EMP) and interaction with the environmental regulatory agencies and Karnataka State Pollution Control Board (KSPCB) for reviewing policy and planning. The Authority also interacts with local people to understand their problems

Environmental Management Division of BDA (EMD) will undertake periodic environmental monitoring to evaluate performance of pollution control measures and to ensure compliance with the prescribed standards. Environmental monitoring will consist of both in house and outsource to recognized laboratories. Environmental Management Division (EMD) will be responsible for the following functions:

The attributes, which merit regular monitoring, are specified underneath

- Continual monitoring & assessment of environmental parameters & regulations.
- To work for continuous & regular improvement in environmental performance.
- > To develop & maintain green belt.
- > To keep close liaison with environmental regulating authorities.
- > To conduct yearly monitoring and submit statement to KSPCB.
- > To manage post project-monitoring plan as per approved REIA & EMP.
- To follow proper documentation, monitoring practices and procedures, this will facilitate the company for effective implementation environmental management system.

6.13 Cost of Environmental Monitoring

Project specific Environmental Management Plan (EMP), stating the various impacts, mitigation measures, is formulated to avoid /minimise anticipated impacts. The responsibility of implementing suggested mitigation measures lies

mainly with Contractor and, Project/Design Consultant. A Monitoring Plan is also proposed to evaluate the efficiency of mitigation measures recommended in the EMP and facilitate management decisions for the project. The break up for the cost is presented in **Chapter 10**.

CHAPTER 7 ADDITIONAL STUDIES

7.1 Land Use / Land Cover Pattern Studies

7.1.1 Introduction

The proposed Peripheral Ring Road (PRR) takes off at CH 17A on Bangalore-Pune NH4 about 150 m from major bridge across Arkavathy River. This 116 Km ring road is planned by Bangalore Development Authority (BDA) and it will circumnavigate the city. The project will be undertaken in two phases – Phase I starting from CH. km 0.000 to CH: km 64.5 and Phase II covering the remaining length. It will be linking the major highways and the district roads right from Tumkur Road, Mysore Road, Old Madras Road and Hosur Road. The upcoming of Peripheral Ring Road (PRR) is expected to instigate vast developments along the corridor.

The scope of the study involves preparation of the report on land use/ land cover details up to 10km buffer zone on either side of the proposed PRR using IRS Resource sat P 6, LISS III data base.

7.1.2 Tools and Resources

In order to meet the project requirements, Ramky has acquired the following satellite data for the study area from National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Department of Space, Hyderabad.

7.1.3 Data base

The Satellite data details:

Satellite:	IRS Resource sat P 6				
Sensor:	LISS III				
Path:	0100 Row: 064				
Orbit:	033291				

M/s Ramky Enviro Engineers Ltd, Hyderabad

Date of Pass07 Mar 2010Spatial Resolution:24mBands:2,3,4,5

The IRS P VI Satellite LISS III data and Land use / Land cover pattern upto 10km Buffer is shown in the **Figure 7.1 & 7.2**

The road alignment has been taken as per the information provided by the client. The Survey of India Toposheets 57 G/8, 57 G/12, 57 G/16, 57 H/5, 57 H/9 and 57 H/13 have been used for the spatial referencing purpose.

7.1.4 Limitations

The limitations of Remote Sensing, Image Processing, Geographical Information Systems, cartography and GPS are applicable in this study.

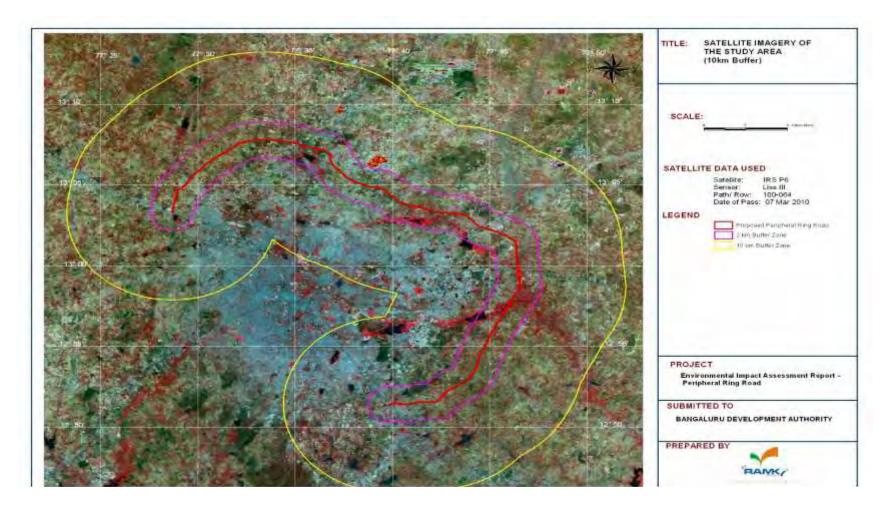


Figure 7.1 IRSP VI Resource sat LISS III data upto 10 KM Buffer

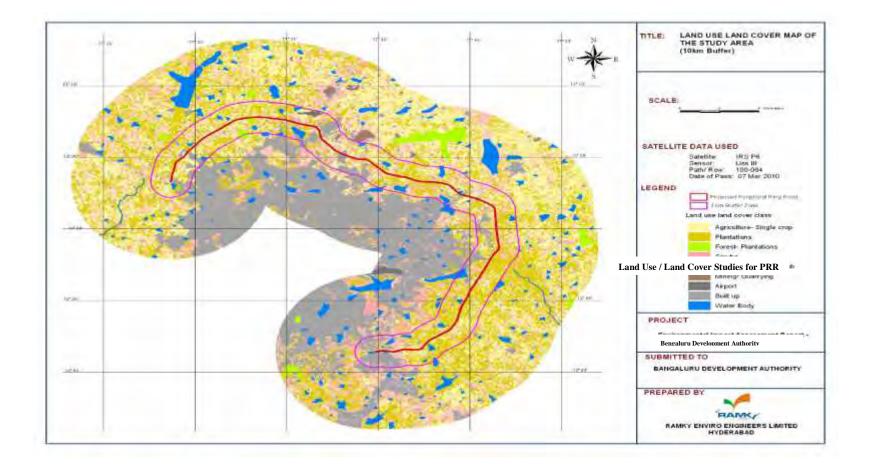


Figure 7.2: Land Use / Land Cover pattern up to 10km Buffer

7.2 Methodology

7.2.1 Pre-Processing Of Data

The Digital Image Processing has been performed using ERADS Imagine software tools and Garmin GPS has been used for Ground truthing.

All the topo sheets of the study area have been geometrically corrected to geographical coordinates using the ground control points (GCPs). The IRS P VI LISS III data has been geometrically corrected with respect to Survey of India topo-sheets. To carry out the geo-referencing, ground control points (GCPs) were identified on the maps and raw satellite data.

The coefficients for two co-ordinate transformation equations were computed based on polynomial regression between GCPs on map and satellite data. Alternate GCPs were generated till the Root Mean Square (RMS) error was less than 0.5 pixel and then both the images were co-registered.

This IRS - PVI LISS III data has been used for the Land Use Land Cover Analysis of buffer Zone. The satellite image is analyzed digitally by the method of supervised classification with necessary Ground truthing using the reference map as well as GPS instrument.

The classified imagery has been converted in to vector format and analyzed using GIS application software.

7.2.2 Land Use / Land Cover Classification for Buffer Zone

Digital image processing was carried out to delineate various land use / land cover categories in 10 km buffer Zone viz. build up area, crop areas, forests, Forests, land with or without scrub, water bodies by assigning necessary training sets, which were identified based on tone, texture, size, shape pattern and location information. Necessary care has been taken to identify proper land use class, where there is conflict between signatures of various classes. The interpreted map was verified on ground at limited points and final land use / land cover map was prepared.

M/s Ramky Enviro Engineers Ltd, Hyderabad

7.2.3 Various Land Use Classes

The buffer zone can be broadly identified into forest areas, built-up areas, agriculture areas and other land with or without Scrub. The definitions of various land use classes are given below.

7.2.3.1 Forest Cover

All the areas declared as reserve forest and state forest areas are shown in this class. The forests can be classified based on density into following classes

- > **Closed Forest:** Forests with tree canopy coverage above 70%
- > **Dense Forest:** Forests with tree canopy coverage between 40%-70%
- > **Open Forest:** Forests with tree canopy coverage between 10%-40%
- > **Dense Scrub:** Forests with tree canopy coverage between 5%- 10%.
- > **Open Scrub:** Forests with tree canopy coverage between 1%- 5%.
- Forest Blanks: Forests with tree canopy coverage less than 1%. Forest encroachments and illegal agriculture would be considered in this class.
- Forest Plantations: The plantations raised with in the reserve forest boundaries would be considered in this class.

Conclusion: The Reserve forest and State forest are seen in the study area. These areas are covered with Forest plantations with some shrubs.

7.2.3.2 Agricultural Area

- Double Crop Land: The areas where farmers practice cultivation for two seasons (Rabi and khariff) in a year.
- Single Crop Land: The areas where farmers practice cultivation for single season in a year.
- Plantations: The private areas with horticulture/ other plantations. Conclusion: Only Single crop lands and plantations are available in the study area.

7.2.3.3 Waste Lands

Scrubs:

Generally waste lands- non agriculture, non-forest areas covered with dense scrubs.

Areas with/ without Scrub:

Generally waste lands- non agriculture, no forest areas covered with or without scrubs.

Conclusion: The above classes are available in the study area.

7.2.3.4 Built-up Area

Built up land: The cities/ towns/ villages/ colonies/ Industries/ Airports are considered in this class.

Conclusion: The part of Bangalore City is covered in the buffer zone along with other habitations. Yelhanka Airport falls within the 2 km buffer zone.

7.2.3.5 Mining Areas

The areas, where the mining activity is being carried out/ has been done are considered in this class.

Conclusion: Granite quarries are observed in the buffer zone

7.2.3.6 Water Bodies

The oceans, rivers, streams, lakes, tanks, reservoirs, canals etc will be identified in this class.

Conclusion: Few streams and tanks are observed in the study area.

7.3 Land Use / Land Cover Details of Buffer Zone

The image of the study area up to 10 km. from the proposed ring road as captured by satellite is presented in **Figure 7.1**. The Land use land cover in this study area (buffer zone 10 & 2 km) is depicted in **Figure 7.2**. The various classes and their respective areas with percentage of coverage are given below in **Table 7.1**. And the area statistics of 2 km buffer zone has given in the **Table**

7.2. The pie diagrams of 10km buffer zone and 2km buffer zone are shown in **Figure 7.3 & 7.4**.

S. No	Land u	use land cover class	Area in Ha	Area in %	
5. NO	Class	Sub class	Area In na		
1	Forest Cover	a. Forest- Plantations	1920.08	1.21	
2	Agriculture Area	a. Agriculture- Single crop	41834.99	26.33	
		b. Plantations		23.02	
3	Waste Lands	a. Scrubs	3378.51	2.12	
		b. Land with/ without scrub	28748.59	18.10	
4	Built up area	a. Built up land	37998.87	23.92	
		b. Airport - Yelahanka	328.60	0.21	
5	Mining Areas	a. Mining/ Quarrying	538.49	0.34	
6	Water Bodies	a. Water Body	7544.47	4.75	
			158858.83	100.00	

Table 7.1: Land Use / Land Cover Statistics of 10km buffer zone

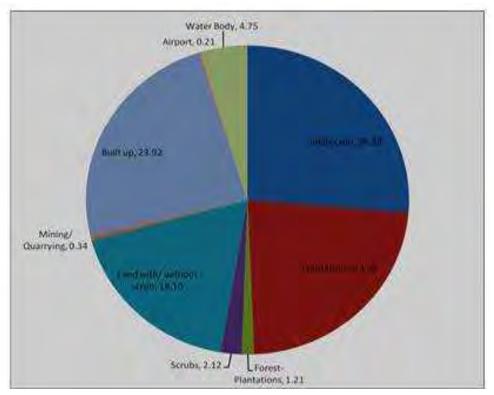
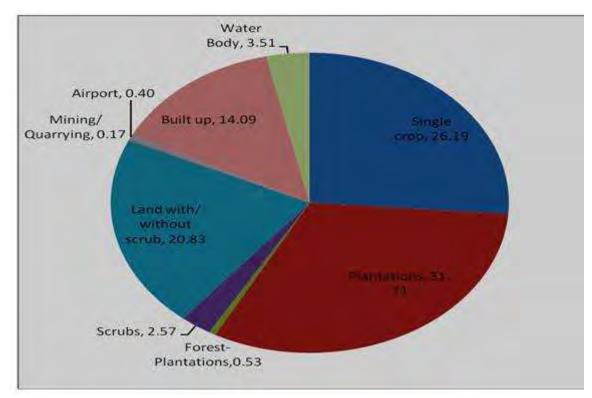



Figure 7.3: Land Use / Land Cover pattern of 10km buffer zone

S No	Land u	Area in Ha	Area in %	
	Class	Sub class		
1	Forest Cover	a. Forest- Plantations	146.78	0.53
2	Agriculture Area	a. Agriculture- Single crop	7277.51	26.19
3		b. Plantations	8808.67	31.71
4	Waste Lands	a. Scrubs	713.50	2.57
5		b. Land with/ without scrub	5787.00	20.83
6	Built up area	a. Built up land	111.23	0.40
7		b. Airport	3912.77	14.09
8	Mining Areas	a. Mining/ Quarrying	45.96	0.17
9	Water Bodies	a. Water Body – Yelahanka	974.99	3.51
Total			27778.41	100.00

Figure 7. 4: Land Use / Land Cover pattern of 2 km buffer zone

7.4 HYDROLOGICAL STUDIES

The Peripheral Ring Road (PRR) is crossing a number of water bodies in its run. As such it is a pre-requisite that the cross drainage structures should be safe and capable of allowing the peak flood discharge smoothly at the particular location.

Hydraulic design of bridges involves two sequential activities, namely the estimation of peak flood flow and design of suitable structure to accommodate it. The studies has been carried out by STUP consultants Pvt.Ltd., The study covering:

- Topographical data and maps of stream system in the area
- Rainfall pattern of the project area
- Other relevant data, like, catchment characteristics, slope etc

This section describes about the procedures and standards that have been adopted in the hydraulic, geometric and pavement crust design. The relevant IRC codes were referred for carrying out the computations.

7.4.1 Catchment Area

The catchment area has been obtained from the "Topo" sheet / maps of Survey of India. For the present project topo maps of scale 1:50000 have been used. The catchment area is calculated by tracing the ridge line of the watershed between the respective streams. The respective bridge location is identified in the topo-sheet and the watershed is marked in the scanned scaled topo-sheet.

7.4.2 Hydraulic Design (IRC SP 13)

The hydraulic designs have been carried out as per the procedures given in IRC SP 13.

7.4.3 Discharge Calculation

Calculation using Empirical formula from catchment area

The design discharge has been calculated using Ryve's formula (IRC SP: 13, Cl. 4.3). In this method the maximum flood discharge (Q) of a river is expressed as a function of the catchment area.

Q = CM2/3

Where,

Q= the peak run-off in m3/s and M is the catchment area in sq.km

C = Constant, mainly depending on the distance of the area from the coast.

M = Catchment area in sq. km

In this project the value of constant C is adopted to be 10.

7.4.4 Design Procedure

The nalas crossing the Peripheral Ring Road (PRR) are identified on the catchment area sheet. For each nala crossing, the catchment areas are demarcated and the same is adopted for estimating the design discharge. The hydraulic designs have been carried out as per the guidelines of IRC: SP: 13. The design discharge considered for designing the size of the culverts is 1.5 times the estimated discharge for providing a higher factor of safety. The Peripheral Ring Road (PRR) cuts across most of the nalas at an angle. To reduce the amount of nala training works required, most of the culverts are proposed at a skew. Wherever nala path is available in survey plan but nala could not be traced on the Topo sheet, a single cell box culvert of 1.5 x 1.5m has been provided.

7.5 Summary of Hydrological and Hydraulic Design

The chainages referred to in this section are along the proposed road reference centerline. The detail given in **Table 7.3** has to be ascertained at the time of detailed engineering through collecting additional topographical investigations at individual culvert locations.

SI. No.	Chainage, m	Catchment area in Sg.Km	Discharge Calculated, Q = CM ^{2/0}	Design Discharge, Q	Size (No. of cells x Width x Height)	Skew Angle
1	559.812	1.07741075	10.509894	15.765	2 x 3 .0 x 2.5	26.316°
2	1625.117	0.657192	7.5578931	11.337	1 x 4.0 x 3.0	43 915°
3	2330.000	0.2951	4.4306706	6.646	1 x 3.0 x 2.5	20.532°

Table 7.3: Topographical investigations

SI. No.	Chainage, m	Catchment area in Sq.Km	Discharge Calculated, Q = CM ^{2/3}	Design Discharge, Q	Size (No. of cells x Width x Height)	Skew Angle
4	2425.687	0.255675	4.0265034	6.04	1 x 3.0 x 2.5	40.993°
5	3132.838	0.2951	4.4306706	6.546	1 x 3.0 x 2.5	24.269°
6	3282.002	1.531495	13.288382	19.933	2 x 4.0 x 2.5	28.375°
7	3717.819	Catchment are	a is less to be	demarcated	1 x 1.5 x 1.5	35.569°
8	4831.661	Catchment are	ea is less to be	edemarcated	1 x 1.5 x 1.5	16.247°
9	5240.000	1.374285	12.362242	18.543	1 x 4.0 x 4.0	13.045
10	6452.919	0.33945	4.8643797	7.297	1 x 3.0 x 2.5	26.452
11	7974.702	0.15	2.8213234	4.232	1 x 2.0 x 2.5	24.069°
12	8179.540	0.15	2.8213234	4.232	1 x 2.0 x 2.5	0.0000
13	8409.623	0.15	2.8213234	4.232	1 x 2.0 x 2.5	0.0000
14	9278.624	0.05	1.3558542	2.034	1 x 1.5 x 1.5	20.180°
15	10039.601	2.5925	18.877758	28.317	2 x 4.0 x 4.0	32.920°
16	10882.409	0.647125	7.4804739	11.221	1 x 4.0 x 3.0	34.520°
17	11296.221	0.679025	7.7244542	11.587	1 x 4.0 x 3.0	30.670"
18	12020.000	0.291315	4.3926846	6.589	2 x 3 .0 x 2.5	0.0000
19	13500	1.1665	11.081846	16.623	2 x 3.5 x 3.0	0.000°
20	20695.626	Catchment area	a is less to be	demarcated	1 x 1.5 x 1.5	0.000°
21	22860.415	Catchment area	Catchment area is less to be demarcated			31.180°
22	24693.871	Catchment area	Catchment area is less to be demarcated			0.0000

SI. Nc.	Chainage, m	Catchment area in Sq.Km	Discharge Calculated, Q = CM ^{2/3}	Dəsign Dischargo, Q	Size (No. of cells x Width x Height)	Skow Angle
23	25137.426	Catchment area	a is less to be	demarcated	1 x 1.5 x 1.5	0.000°
24	27157.981	Catchment area	a is less to be	demarcated	1 x 1.5 x 1.5	35.138°
25	29228.032	Catchment area	a is less to be	demarcated	1 x 1.5 x 1.5	26.759°
26	31481.50	1.6625	14.036151	21.054	2 x 4.0 x 4.0	35.000
27	32333.375	Catchment area	a is less to be	demarcated	2 x 4.0 x 3.0	35.912°
28	32866.824	Calchment area	a is less to be (demarcaled	2 x 4.0 x 3.0	0.000°
29	33115.657	Catchment area	Catchment area is less to be demarcated			30.490°
30	33889.164	2.575	18.792667	28.189	2 x 4.0 x 4.0	30.787°
31	35398.457	0.1	2.1527817	3.229	1 x 2.0 x 2.5	29.025°
32	36297.731	2.4	17.930851	26.896	2 x 4.0 x 4.0	38.000°
33	36993.841	Catchment area	a is less to be	demarcated	1 x 1.5 x 1.5	0.000°
34	37229.903	Catchment area	a is less to be	demarcated	1 x 1.5 x 1.5	26.342°
35	38107.367	Catchment area	a is less to be	demarcated	1 x 1.5 x 1.5	0.000°
36	39655.549	Catchment area	a is less to be (demarcated	1 x 1.5 x 1.5	0.000
37	42218.497	0.2325	3.7792369	5.669	1 x 3.0 x 3.0	0.0000
38	43247.391	Catchment area	a is less to be (demarcated	1 x 2.0 x 2.5	39.356°
39	43348.739	Catchment area	Catchment area is less to be demarcated		1 x 2.0 x 2.5	4.414 ⁰
40	43712.761	0.625	7.3088992	10.963	1 x 4.0 x 3.0	13.244°
41	44544.421	0.625	7.3088992	10.963	1 x 4.0 x 3.0	9.754°

SI. No.	Chainage. m	Catchment area in Sq.Km	Discharge Calculated, C = CM ^{2/9}	Design Discharge, Q	Size (No. of cells x Width x Height)	Skew Angle
42	45214.727	0.625	7.3088992	10.963	1 x 4.0 x 3.0	13.352°
43	45600.874	Catchment are	a is less to be	demarcated	1 x 1.5 x 1.5	3.791°
44	46241.077	Catchment are	a is less to be	demarcated	1 x 2.0 x 2.5	0.000°
45	46492.020	0.3625	5 0822783	7.623	1 x 3.0 x 2.5	12.112°
46	46910.008	Catchment are	a is less to be	demarcated	1 x 3.5 x 2.5	0.0000
47	47012.883	1.3375	12.140539	18.211	2 x 4.0 x 2.5	24.155°
48	47111.613	Catchment area	a is less to be	1 x 2.0 x 2.5	0.000°	
49	47180.284	Catchment are	Catchment area is less to be demarcated			47.505°
50	47552.608	0.25	3.9666692	5.95	1 x 3.0 x 2.5	36.900°
51	48023.702	0.5375	6.6094061	9.914	1 x 4.0 x 3.0	11.689°
52	48164.930	Catchment area	a is less to be	l demarcated	1 x 1.5 x 1.5	32.130 ⁰
53	49186.716	0.5375	6.6094061	9.914	1 x 4.0 x 3.0	16.6260
54	50252.726	Catchment area	a is less to be	demarcated	2 x 3 .0 x 2.5	0.000°
55	50457.229	Catchment area	a is less to be	demarcated	1 x 2.0 x 2.5	0.000°
56	50703.655	1.4875	13.032532	19.549	2 x 4.0 x 2.5	31.634°
57	51355.274	0.125	2.4982677	3.747	1 x 2.0 x 2.5	14.423°
58	51596.037	0.07	1.6969943	2.545	1 x 2.0 x 2.5	10.367°
59	51666.360	0.07	1.6969943	2.545	1 x 2.0 x 2.5	0.000 ⁿ
60	52226.470	Catchment are	a is less to be	demarcated	2 x 4.0 x 2.5	29.306°

M/s Ramky Enviro Engineers Ltd, Hyderabad

SI. No.	Chainage, m	Catchment area in Sq.Km	Discharge Calculated Q = CM ^{2/3}	Design Discharge, Q	Size (No. of cells x Width x Height)	Skew Angle
61	52755.377	1.525	13.250766	19.876	2 x 4.0 x 2.5	35.780°
62	53259.494	Catchment are	a is loss to be	demarcated	1 x 4.0 x 4.0	0.000°
63	53575.380	2.2040505	16.940599	25.411	2 x 4.0 x 3.0	31.067°
64	55482.903	Catchment are:	a is less to be	demarcated	2 x 3 .0 x 2.5	9.450⁰
65	55650.952	0.22515275	3.6991533	5.549	2 x 3 .0 x 2.5	16.720°
66	55970.412	Catchment are	a is less to be	demarcated	2 x 4.0 x 2.5	6.728 ⁰
67	56781.630	Catchment area	a is less to be	demarcated	2 x 4.0 x 2.5	3.980°
68	56955.857	2.92225	20.447183	30.671	2 x 4.0 x 4.0	34.280 ⁿ
69	58715.674	0.27922875	4.2702707	6.405	1 x 3.0 x 2.5	37.090 [°]
70	59367.892	0.730425	8.1097029	12.165	1 x 4.0 x 4.0	31.200°
71	60405.825	0.24392775	3.9021434	5.853	1 x 3.0 x 2.5	17.970°
72	80532.696	Catchmont area	a is less to be	demarcated	1 x 1.5 x 1.5	16.937°
73	60634.413	2.7475	19.623273	29.435	2 x 5.0 x 3.0	0.000°
74	61823.321	1.997375	15.863776	23.796	2 x 3 .0x 2.5	0.000°

*Source: STUP consultants Pvt.Ltd.

7.6 Public Hearing

Proceedings of the Environmental Public Hearing held on 06.02.2014 at 11.00 am in Connection with the Proposed- 8 Lane Peripheral Ring Road Development (Phase-I) Project which Starts from Chainage 0.00 km to Chain age 64.5 (65) km Connecting Tumkur Road with Hosur Road through Old Madras Road is enclosed as **Annexure**.

CHAPTER 8 PROJECT BENEFITS

8.1 Employment Potential

Bangalore Development Authority (BDA) has been entrusted with the responsibility to take up the development of Peripheral Ring Road (PRR) in phases for a smooth flow of traffic, to reduce the traffic congestion, pollution intensity and travel time.

The main objective of the project is to provide safe and efficient service levels to growing traffic movements and better connectivity to the region. The industry and other users of the road will be benefited from the proposed improvement on account of comfort, safety and reduced vehicle operating costs.

A significant economic benefit of the improvement project is generation of employment opportunities in the construction activities, which will be available to the people, including affected community. Besides, they will also draw benefits from the economic activities as a result of increased traffic flow and movement of vehicles.

8.2 Concluded Benefits of the Project

- To accelerate regional economic development in terms of industry, tourism and agriculture,
- To reduce vehicle operating and maintenance costs by improving road conditions,
- To reduce travel time by minimizing congestion in urban stretches and providing a four lane facility over there,
- To minimize road accidents by increasing road widths, improving intersections and road geometry
- The project may also generate local employment opportunities through the construction activities and local business.
- Abatement of ambient air and noise pollution in comparison to a donothing situation.

- Increase in safety due to construction of median in urban sections between two directions of traffic flow.
- Construction of Road Over Bridge (ROBs) shall reduce travel time and enhance smooth flow of the traffic and Project facilities included in the project preparation are Bus Bays, Truck Lay Bye, Road Street Lighting etc.

CHAPTER 9

ENVIRONMENTAL COST BENEFIT ANALYSIS

9.1 Environmental Cost - Benefit Analysis

Evaluation of environmental costs of a project is to estimate its relative merits and demerits known as environmental cost benefit analysis.

9.2 Cost Benefit Analysis and the Environment

The Potential Environmental benefits envisaged from the proposed Peripheral Ring Road (PRR) project are summarized below:

- Removal of excavated material and extensive plantation developed on either side of the Peripheral Ring Road (PRR).
- There will be negligible impact on water environment and the rainwater will be diverted in to the paved areas.
- The domestic effluent will be generated which will be treated and disposed off in septic tanks and soak pits. Adopting scientifically enhanced solar lighting system & other energy efficient strategies to conserve energy for road lighting will mitigate the natural resource depletion.
- Prevent & spreading of fugitive dust and other atmospheric pollutants such as PM_{2.5}, PM₁₀, NO_X and SO₂ generated during construction and operation of the Peripheral Ring Road (PRR).
- > Purchase of larger, more energy efficient construction equipment
- Improved maintenance of construction machinery and transport locomotives
- More efficient use of equipment by optimizing truck cycle times and reducing idling times

CHAPTER 10 ENVIRONMENTAL MANAGEMENT PLAN

10.1 Development of Environmental Management Plan

The Environmental Management Plan (EMP) is the synthesis of all proposed mitigative and monitoring actions, set to a time-frame with specific responsibility assigned and follow-up actions defined. It contains all the information for the proponents, the contractors and the regulatory agencies to implement the project within a specified time-frame.

The Environmental Management Plan (EMP) is a plan of action for avoidance, mitigation and management of the negative impacts of the project. The Environment Enhancement is also an important component of Environmental Management Plan (EMP).

The Environmental Management Plan (EMP) refers to all implemental tasks at different stages of project, namely,

- Construction Phase
- Operation Phase

The Environmental Management Plan (EMP) includes a list of all project-related activities & impacts and schedule. The Environmental Management Plan (EMP) has been presented in the **Table 10.1**.

Table 10.1 : Environnemental	Management Plan (EMP)
------------------------------	-------------------	------

Activity	Environmental Impact	Mitigation Measures	Responsibility
Pre – construction phase			
Land Acquisition, clearing encroachments and R&R	Loss of buildings	The land acquisition would be in accordance with the RAP and entitlement framework. All R&R activities are to be completed before starting the construction.	NGOs, PIU
Relocation of Utilities and common property resources (CPR)	Damage to utilities, Inconvenience to Public	All the utilities and common property resources being impacted due to the project will have to be relocated with prior approval of the concerned Departments/Agencies before construction starts.	Contractor, PIU
Debris disposal site identification	loss of productive lands or natural habitats	Selection of the disposal sites will be carried out in consultation with the State Pollution Control Board, Revenue Department and Forest Department in order to ensure that no natural drainage, productive lands or natural habitat is adversely impacted due to disposal. Preferably, debris disposal site would be identified in barren, infertile land.	Contractor, PIU
Establishment of Stone Crushers, Batching Plants, Hot-mix plants	Air, water, noise and soil pollution	Specifications of Stone crushers, hot mix plants and batching plants to be established for the project should comply with the requirements of the relevant State/Central Pollution control Board legislations.	Contractor
Selection of construction vehicles, machinery and equipments	Air and noise pollution	All the vehicles, machinery and equipments to be engaged for the construction work should be attached with the latest, advanced pollution control measures available in the country and those should conform to the relevant Indian standards.	Contractor, PIU
Materials (Sand, earth and aggregates)	Loss of productive land, noise and air	Contractor should procure materials from licensed sources.	Contractor , PIU

sourcing	pollution	Every detail (Location, ownership, agreement, redevelopment Plan) of the material sourced should be intimated to CSC for periodic inspections so that appropriate measures are implemented at site towards safe operation and minimizing impacts.	
Haul roads maintenance	Air and noise pollution	During the inception of the project, Contractor should identify the network of roads (especially the village roads) to be used for haulage of construction materials. Strategy for the maintenance of identified haul road stretches is to be prepared so that regular maintenance is carried out to those stretches by the Contractor for easy plying of construction vehicles as well as the regular local commuters.	Contractor, CSC, PIU
Selection of Borrow areas	Air, water and noise pollution, loss of productive lands	Compliance to all the State norms towards operation and environmental protection of borrow areas is the sole responsibility of the Contractor. CSC will inspect locations intended for operation and mitigation measures will be instructed towards satisfactory redevelopment. Inspection to the borrow areas will be carried out by raising Request for Inspection (RFI) by the Contractor for each of the borrow areas and obtain subsequent approval from CSC.	Contractor and CSC
Selection of Stone Quarries	Air and noise pollution, loss of productive lands	Contractor will identify the stone quarries in consultation with the Mining Department. A comprehensive Quarry Management Plan need to be prepared incorporating Environmental and Safety Management Plan with special emphasis to Quarry redevelopment for approval from CSC.	Contractor
Construction Phase 1. Impact on Soil Quality			
Removal of vegetation cover,	Increased soil	Turfing of road embankment slopes,	Contractor
Excavations of borrow pits	erosion, loss of top soil.	development of compensatory afforestation and	and CSC

Acquiring of extra RoW and construction of realignments, Use of productive lands for storing, stock yards and workers camp, Borrowing of earth	Loss of Productive topsoil	 Borrow area rehabilitation has to be done as preventive measures for soil erosion. Further Top soil from borrow areas has to be stripped to a specified depth and stored in stockpiles of height not exceeding 2 meters with proper covering. This shall be restored for rehabilitation of borrow pits. In borrow pits, the depth of the pit should be regulated so that the sides of the excavation will have a slope not steeper than 1 vertical to 4 horizontal from the edge of the final section of bank. The device for checking soil erosion include the formulation of sediment basins, slope drains etc. Such works and maintenance thereof will be deemed as incidental to the earthwork. Cutting of trees will be carried out in phases and compensatory afforestation to start at the earliest with sufficient protection measures. The topsoil from all areas of cutting and areas of storing and stock yards and workers camp have shall be stripped to a specified depth of 150 mm and stored in stockpiles of height not exceeding 2 meters with proper covering. The stored topsoil will be spread back to restore the productivity of the exhausted borrow areas. Also the accumulated soil will be utilized for developing median plantation and raising turfs in the embankment slopes. 	Contractor and CSC
Movement of Heavy Vehicles	Compaction of productive top soil	practicing fishery.Construction vehicles, machinery and equipment shall move, or be stationed in pre- identified designated areas only.If operating from temporarily hired land, it will be ensured that the topsoil for agriculture	Contractor and CSC

		remains preserved & not get compacted.	
Spillage of fuel, lubricants and hazardous chemicals	Contamination of soil and negative impact on the growth of the floral vegetation and faunal distribution.	Vehicles and machinery are maintained and refilled in such a fashion that fuel spillage does not contaminate the soil. Fuel storage and refilling sites should be kept away from cross drainage structures and important water bodies. All spills shall be disposed off as desired and the site shall be fully cleaned before handing over. Soil quality monitoring should be conducted as per Environmental Monitoring Plan to ascertain level of contamination.	Contractor and CSC
Disposal of construction wastes	Loss of productive lands	The construction wastes should be dumped in selected pits, developed on infertile land. All applicable waste disposal norms to be followed. Waste land to be preferred for construction debris disposal.	Contractor and CSC
2. Impact on Water Quality			
Surface runoff from the construction site, dumping of construction debris in or nearby water bodies	Increased turbidity of water. Deterioration of Water quality of Community water sources. Adverse impact on aquatic ecosystem.	No labour camps, stone crushers, hot mix plants and other heavy machinery should be located near to water bodies. No discharge from such establishments should follow their path into nearby water bodies. Dumping of debris in or nearby water bodies to be strictly avoided. Waste products must be collected, stored and taken to approved disposal sites as per prevailing disposal norms. Runoff from the construction site should be passed through silt traps. Pitching, stabilization of soil and slope protection measures should be taken up to reduce erosion of soils. Water quality monitoring should be conducted as per Environmental Monitoring Plan so that appropriate measures are taken up towards abatement of pollution.	Contractor and CSC

Spillage of fuels and lubricants, spillage of hazardous chemicals	Deterioration of water quality of community water sources. Adverse impact on aquatic ecosystem.	Appropriate drainage arrangements with catch drains and catch pits designed to safely drain out the hazardous chemicals should be provided. To avoid spillage of fuel and lubricants, the vehicles and equipment shall be properly maintained and repaired. Maintenance to be carried out on impervious platforms with spill collection provisions. Surface run off from vehicle parking, washing and fueling areas and hot mix plant areas has to be passed through oil interception chambers and the oil will be skimmed off manually from the chamber and will be disposed off in approved landfill sites. The Schematic drawing of Oil interception chamber is enclosed as Annexure . Water quality monitoring should be conducted as per Environmental Monitoring Plan to detect any contamination or spillage.	Contractor and CSC
Acquisition of water sources like wells, tube wells & ponds	Loss of drinking water and irrigation water sources.	Any source of water for the community such as ponds, wells, tube-wells etc. lost incidentally shall be replaced immediately.	Contractor and CSC
Construction of bridges across major water bodies	Water shortage in down stream water users.	The construction of bridges across major water bodies has to be done by serving prior notice to the users. Care should be taken to avoid mixing of construction materials with water channel such that it may affect the down stream users or water supply schemes.	Contractor and CSC
Construction of embankments	Blocking of cross drainage and resultant flooding.	Earth, stone or any other construction material should be properly disposed off so that the flow of water in cross drainage channels is not blocked.	Contractor and CSC
Absence of proper	Contamination of water	Construction laborers' camps shall be located	Contractor

sanitation and waste disposal in construction camps	bodies and spreading of water-borne diseases. Health risk to workers & public	away from the habitation and from major water bodies. Adequate sanitary facilities, drainage, washing and toilet facilities with septic tanks and refuse collection and disposal should be provided to the workers. The provision of water supply and toilet facilities should be made as per the stipulated guidelines in the Indian Labour Act. Water quality monitoring should be conducted as per Environmental Monitoring Plan.	and CSC
Use of water for construction from community water sources	Scarcity of water to the community	Arrangement for supply and storage of water will be made by the contractor in such a way that the water availability and supply to nearby communities remain unaffected. If a new tube- well is to be bored, proper sanction and approval by Ground Water Department is needed. The wastage of water during the construction should be minimized. In case of tapping water from community sources, consent to be obtained from local Administration for the same.	Contractor and CSC
Construction of Impervious bituminous pavement and drains	Reduction in area for ground water recharge	Rain water harvesting pits will be constructed at average distance of 500 m. The pits should be atleast 3 - 5 m above the highest ground water table. The schematic diagram of Rain water harvesting pit is enclosed as Annexure.	Contractor and CSC
3. Impact on Air Quality			1
Gaseous emission from construction vehicles and machinery	Deterioration of ambient air quality and adverse health impacts.	All vehicles, equipment and machinery used for construction should be fitted with latest air pollution control equipments and should be regularly maintained to ensure that the emission levels are as per norms of PCB. Idling of delivery trucks or other equipment should not be permitted during periods of unloading or when they are not in active use. The human settlements should be at least 500	Contractor and CSC

		m down windward direction of Hot (asphalt) mix plant. The construction operations during nights, especially in the winter season should be carried out under restricted conditions. Air quality monitoring should be conducted as per Environmental Monitoring Plan to detect any deterioration in air quality due to the construction activities.	
Dust generation due to material handling, operation of crushers and hot mix plants, movement of construction vehicles and construction activities	Dust emissions will have adverse effect on the health of construction workers as well as the public in the surrounding Communities. Dust settled on leaves may reduce growth rate of the plants.	All precautions to reduce the level of dust emissions from the hot mix plants shall be taken. The hot-mix plants should be sited at least 500 m from the nearest habitation and from major water bodies. They should be fitted with dust extraction units. Water should be sprayed on the earth mixing sites, asphalt mixing site and service roads. During sub grade construction, sprinkling of water should be carried out at least twice a day on a regular basis during the entire construction period especially in the winter and summer seasons. Special attention should be given in the sections where the alignment passes through sensitive areas such as schools, hospitals and urban areas. As soon as construction is over the surplus earth should be utilised to fill up low-lying areas. In no case, loose earth should be allowed to pile up along the alignment. Vehicles delivering material should be covered. Air quality monitoring should be conducted as per Environmental Monitoring Plan.	Contractor and CSC
4. Impact on Noise Levels			
Noise generated from construction vehicles, asphalt plants and equipments	Since the noise Generating activities are localized and intermittent, no serious	Construction contract should clearly specify the use of equipment emitting noise of not greater than 90 dB(A) for the eight hour operation shift. The citing of construction yards should be done	Contractor and CSC

	impact on human health is anticipated. Residential areas nearby the construction site may experience increase in night time ambient noise levels.	 leaving at least 100 m distance from any residential areas which will allow noise to attenuate. The main noise producing sources such as the concrete mixers, generators, grader etc. should be provided with noise shields around them. The noise shields can be any physical barriers, which is effective in adequate attenuation of noise levels. A 3 m high enclosure made up of brick and mud with internal plastering of a nonreflecting surface will be very effective in this regard. For protection of construction workers, earplugs should be provided to those working very close to the noise generating machinery. At construction sites within 150 m of human settlements, noisy construction should be stopped between 10:00 pm and 8:00 am Noise level monitoring should be conducted as per Environmental Monitoring Plan. 	
5. Impact on Flora and Fauna Removal of trees for Construction of road and construction of realignments.	Biodiversity will be negligible since most of the trees are of common occurrence. Loss of trees will lead to Increase in soil erosion, loss of shade and other benefits of trees, and decline in air quality.	Small trees shall be transplanted wherever possible to minimise the impacts of loss of trees. Trees should be removed in phases. Areas of tree plantation cleared will be replaced according to Compensatory Afforestation Policy under Forest Conservation Act-1980. The compensatory plantation should be carried out in consultation with the State Forest Department. Adequate care of the compensatory plantation should be taken up so as to achieve optimum survival rate. Landscaping should be done with a lag of 3 to 4 months from the start of the work on any section. The section should be deemed to be complete when the landscaping is over. Survival rate of plants must be included in the	Contractor and CSC

6. Impact on Protected Areas	5	contract specifications so as to ensure that the compensatory plantation achieves the objective of compensating lost trees. Indigenous and endemic tree species suitable for the area should be planted at the onset of monsoon season. The plants should be provided with adequate protection from animals and proper monitoring should be carried out to ensure their growth.	
Construction of highway / Raw Material handling within protected areas	Impact on soil Impact on air quality Impact on noise levels Impact on tranquility of protected areas due to human influence within protected area.	Borrow areas should not be located in protected areas. Debris dumping should be completely avoided. No labour camps / material stocking yard should be located within protected area. Construction material, especially hazardous material handling should be done with due care to avoid spillage within protected area limits. Minimum construction machineries should be deployed within protected area limits. Mixing of raw materials should be completely avoided within protected areas. Simultaneous working of construction machineries should be avoided in protected areas to have least noise level due to the activities. Least minimum number of machineries should be deployed along the construction site falling within protected areas. Noisy construction should be completely avoided during night time (10.00 pm – 6.00 am) Human activities should be completely restricted to the proposed RoW such that there should not be any ingress in to forest areas for poaching of animals / any other items.	Contractor and CSC
7. Impact on Health and Safe	ty of Workers		
Poor maintenance of machines and vehicles, poor	Accident risk to workers from construction	To ensure safe construction environment, lighting devices and safety signal devices shall	Contractor and CSC

light conditions at the work place, carelessness and poor management of work	activities.	be installed. Traffic rules and regulations to be strictly followed. Safety of workers undertaking various operations during construction should be ensured by providing them helmets, masks, safety goggles etc. Regular tool talks, mock drills, training programmes to be organized towards educating workers towards adopting safe working methods. The electrical equipment should be checked regularly to avoid risks to workers. At every work place, a readily available first aid unit including an adequate supply of dressing materials, a mode of transport (ambulance), nursing staff and an attending doctor to be provided.		
Unhygienic conditions at work place and camp sites, Non- availability of good drinking water.	Health problems to workers	Adequate drainage, sanitation and waste disposal to be provided at workplaces. First Aid facility to be made available at each work locations. Periodical medical checkup facility to be provided to all the workers. At every workplace, good and sufficient water supply shall be maintained to meet the daily chore of the residing population. Measures to be implemented so that waste water is collected in septic tanks/soak pits. No surface stagnation of water will be allowed to avoid vector outburst.	Contractor and CSC	
8. Impact on Cultural Properties and Amenities				
Construction at culturally or archaeologically important locations.	Damage or loss of cultural properties	All necessary and adequate care should be taken to minimise the impact on cultural properties If articles such as fabrics, coins, artifacts, structures or other geographically or archaeologically important materials are discovered, the excavation should be stopped	Contractor and CSC	

Roadside landscaping	Improved aesthetics	 and the Archaeological Department should be intimated. Avenue plantation to be carried out with foliage, shady trees mixed with flowering trees, shrubs and scented plants as per detailed designs. Rest areas for travelers at specified chainages to be developed with landscaping so as to avail 	Contractor and CSC
Improvement of roadside amenities	Improved comfort level of travellers	 shade. Restoration and improvement of bus shelters, bus bays and truck stoppage sites to be carried out as per detailed design. Road furniture like footpaths, railings, traffic signs etc. shall be erected as per design. 	Contractor and CSC
Enhancement of cultural properties	Harmony, goodwill and coherence Amongst communities	Enhancement of all cultural properties and access road shall be completed as per the design.	Contractor and CSC
Operational Phase			
Improvement of road geometry and pavement condition	Less chances of accidents.	Proper implementation of traffic rules by the traffic Police. Proper maintenance of traffic signs and implementation of accident care facilities along the road by the project implementation agency.	Contractor, PIU and Police
Improvement of road surface and its maintenance	Reduced dust generation from road. Increased Vehicular emissions due to increased traffic.	Proper implementation of vehicular emission control rules by the Motor Vehicles Department. Roadside tree plantation to be restored and maintained as per the compensatory plantation plan. PM ₁₀ , PM _{2.5} , SO ₂ , and NO _x to be monitored as per Environmental Monitoring Plan.	Contractor, PIU and Motor Vehicles Department
Increase in traffic	Increase in the Ambient noise levels, especially during night time along the project road.	Development of greenbelt comprising selected species of trees with high canopy along the project road for attenuation of noise. Use of horns should be restricted at sensitive locations like schools and hospitals through the use of appropriate signboards along the road. Use of air horns should be minimised during night.	Contractor, PIU and Police

		Noise barriers should be provided along the road at sensitive locations such as hospitals, schools, residential areas, courts etc. Noise monitoring should be conducted as per Environmental Monitoring Plan.	
Increase in embankment height and Improvement of flood water drains.	Water logging during monsoon will not take place.	The cross drainage system and the flood water drains should be periodically cleared.	Contractor and PIU
Construction of Rain water harvesting pits at an average distance of 500m.	Enhanced ground water recharge.	The rain water harvesting pit opening should be periodically cleaned during operation phase such as to ensure enhanced ground water recharge. The schematic diagram of Rain water harvesting pit is presented as	Contractor / BDA.
Compensatory plantation	Improved biodiversity and aesthetics	The re-plantation scheme, containing Indigenous and endemic tree species suitable for the area, should be strictly implemented.	Contractor and PIU
Mangrove plantation and maintenance	Restoration of mangrove areas	The re-plantation and maintenance scheme at mangrove locations should be strictly followed.	Contractor and PIU
Movement of vehicles with higher speed along protected forest areas	Impact of traffic on wild animals.	Drivers should be warned with proper sign boards for speed restriction within the forest areas especially along the possible animal crossing locations and about the major wildlife habitats near by the highway. Usage of air horns should be completely avoided within protected forest areas both during day and night time. Forest officials should carry out frequent patrolling along the road in the protected areas to avoid exploitation of forest resources / teasing of animals by road commuters.	BDA/ State Forest Department
Spillage of hazardous chemicals due to accidents	Soil and water bodies nearby the accident site may get	The rules as defined in Environmental (Protection) Act, 1986 should be complied For delivery of hazardous substances, three certificates namely permit license, driving	Motor Vehicles Department, Police

	contaminated. Safety risk to the public nearby the accident area.	license and guarding license issued by Transport Department should be maintained. Vehicles carrying hazardous substances should display mandatory safety signs. In case of spillage, it should be reported to relevant department and their instructions should be followed Cleaning of the spills at the accidental site should be carried out as per regulations.	
Improved safety measures and improved traffic management	The chances of accidents would be reduced	Traffic management plan to be developed, especially in congested locations. Traffic control measures including speed limits to be enforced strictly. RoW should be properly marked and further encroachment of RoW should be strictly prevented. Road side vendors should be restricted to designated areas only.	PIU, Motor Vehicles Department and Police

10.2 Environmental Compliance Monitoring Plan

The purpose of the monitoring programme is to ensure that the envisaged purpose of the project is achieved and results in desired benefits to the environment and population affected. To ensure the effective implementation of the Environmental Management Plan (EMP), it is essential that an effective monitoring programme be designed and carried out.

The broad objectives are

- > To evaluate the performance of mitigation measures proposed in the EMP
- > To evaluate the adequacy of Environmental Impact Assessment (EIA)
- > To suggest improvements in management plan, if required
- > To enhance environmental quality; and
- > To satisfy the legal and community obligations.

Various physical, biological and social components identified as of particular significance in affecting the environment at critical locations in various stages of the project have been suggested as Performance Indicators (PIs) listed below shall be the focus for monitoring.

- Air quality with respect to PM₁₀, PM_{2.5}, SO₂, and NO_x
- > Water quality with respect to DO, BOD and Coliform count
- > Noise levels around sensitive locations; and
- > Replantation success / survival rate.

For each of the environmental components, the monitoring plan specifies the parameters to be monitored; location of monitoring sites; frequency and duration of monitoring. The monitoring plan also specifies the applicable standards, implementation and supervising responsibilities.

	Table 10.2: Environmental Monitoring Plan	
Air Quality Monitoring		
Project stage	Construction and operation stage	
Parameter	PM_{10} , $PM_{2.5}$, SO_2 , and NO_x	
Sampling Method	Respirable Dust Sampler to be located 50 m from the plant in the downwind	
	direction. Use method specified by CPCB for analysis	
Standards	Air (Prevention and Control of Pollution) Rules, CPCB	
Frequency	Once every season for three seasons (except monsoon) per year for each	
	year of construction	
Duration	Continuously for 24 hours / or for 1 full working day	
Location	One monitoring station near each construction related facility namely, hot	
	mix plant, labour camp, staff quarters, borrow location and quarry location,	
	and at sensitive locations along the project road at an average distance of	
	10 km during construction stage. Monitoring should be done at each	
	additional construction related facility, if present. At sensitive locations along	
	the project road at an average distance of 10 km during operation stage.	
Measures	Wherever air pollution parameters increase above specified standards,	
	additional measures as decided by the engineer shall be adopted	
Implementation	Contractor through approved monitoring agencies	
Supervision	Bangalore Development Authority (BDA)	
Water Quality Monitoring	9	
Project stage	Construction	
Parameter	pH, BOD, COD, TDS, Oil & Grease and Detergents for Surface water: pH, TDS, Total hardness, Sulphate, Chloride, Fe, Pb for groundwater	
Sampling Method	Grab sample collected from source and analysis as per Standard Methods	
5	for Examination of water and Waste water	
Standards	Indian standards for Inland Surface Water (IS; 2296, 1982) and for Drinking	
	water (IS; 10500,2012)	
Frequency	Thrice a year (covering all season except monsoon) during the	
	construction period	
Duration	Grab sampling	
Location	At major water bodies along the road at an average distance of	
	25 km	
Measures	At locations with chances of increase in water pollution, all inflow channels	
	shall be checked from pollution loads and channel delivering higher pollution	
load shall be terminated from disposal into the water source and		
	methods of disposal shall be adopted	
Implementation	Contractor through approved monitoring agencies	
Supervision	Bangalore Development Authority (BDA)	
Soil Quality Monitoring		
Project stage	Construction	
Parameter	Monitoring of Pb, SAR and Oil & Grease	

Table 10.2: Environmental Monitoring Plan

Absorption Spectrophotometer Standards Threshold for each contaminated set by IRIS database of USEPA until National Standards are promulgated Frequency During the pre monsoon post monsoon seasons each year for the entire construction period Duration Grab sampling Location At productive agriculture lands abutting traffic detours and traffic diversions and major intersections at an average distance of 10 km along the road. Measures At location of increased in pollution levels, source shall be identified and shall be diverted from future disposal Implementation Contractor through approved monitoring agencies Supervision Bangalore Development Authority (BDA) Noise Level Monitoring Project stage Poriget stage Construction and operation stages Parameter Noise level on dB (A) scale Special guidance Free field at 1 m from the equipment whose noise level is being determiner Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavement Standards MoEF Frequency Once every season (except monsoon) for each year of construction Duration Reading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averaged Location Near the hot mix plant and near se	Sampling Method	Sample of soil collected to be acidified and analyzed using Atomic
National Standards are promulgated Frequency During the pre monscon post monscon seasons each year for the entire construction period Duration Grab sampling Location At productive agriculture lands abutting traffic detours and traffic diversions and major intersections at an average distance of 10 km along the road. Measures At location of increased in pollution levels, source shall be identified and shall be diverted from future disposal Implementation Contractor through approved monitoring agencies Supervision Bangalore Development Authority (BDA) Noise Level Monitoring P Project stage Construction and operation stages Parameter Noise level on dB (A) scale Special guidance Free field at 1 m from the equipment whose noise level is being determined distance of 15m from edge of pavement Standards MoEF Frequency Once every season (except monscon) for each year of construction Duration Reading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averaged Location Near the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Measures Incase of noise levels causing disturbance to the sensitive		
FrequencyDuring the pre monsoon post monsoon seasons each year for the entire construction periodDurationGrab samplingLocationAt productive agriculture lands abutting traffic detours and traffic diversions and major intersections at an average distance of 10 km along the road.MeasuresAt location of increased in pollution levels, source shall be identified and shall be diverted from future disposalImplementationContractor through approved monitoring agenciesSupervisionBangalore Development Authority (BDA)Noise Level MonitoringProject stageConstruction and operation stagesParameterNoise level on dB (A) scaleSpecial guidanceFree field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies <td>Standards</td> <td>Threshold for each contaminated set by IRIS database of USEPA until</td>	Standards	Threshold for each contaminated set by IRIS database of USEPA until
LocationGrab samplingLocationAt productive agriculture lands abutting traffic detours and traffic diversions and major intersections at an average distance of 10 km along the road.MeasuresAt location of increased in pollution levels, source shall be identified and shall be diverted from future disposalImplementationContractor through approved monitoring agenciesSupervisionBangalore Development Authority (BDA)Noise Level MonitoringProject stageConstruction and operation stagesParameterNoise level on dB (A) scaleSpecial guidanceFree field at 1 m from the equipment whose noise level is being determiner Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies <td></td> <td>National Standards are promulgated</td>		National Standards are promulgated
LocationAt productive agriculture lands abutting traffic detours and traffic diversions and major intersections at an average distance of 10 km along the road.MeasuresAt location of increased in pollution levels, source shall be identified and shall be diverted from future disposalImplementationContractor through approved monitoring agenciesSupervisionBangalore Development Authority (BDA)Noise Level MonitoringProject stageConstruction and operation stagesParameterNoise level on dB (A) scaleSpecial guidanceFree field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Frequency	
and major intersections at an average distance of 10 km along the road.MeasuresAt location of increased in pollution levels, source shall be identified and shall be diverted from future disposalImplementationContractor through approved monitoring agenciesSupervisionBangalore Development Authority (BDA)Noise Level MonitoringProject stageProject stageConstruction and operation stagesParameterNoise level on dB (A) scaleSpecial guidanceFree field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Duration	Grab sampling
shall be diverted from future disposalImplementationContractor through approved monitoring agenciesSupervisionBangalore Development Authority (BDA)Noise Level MonitoringProject stageProject stageConstruction and operation stagesParameterNoise level on dB (A) scaleSpecial guidanceFree field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Location	
Supervision Bangalore Development Authority (BDA) Noise Level Monitoring Project stage Construction and operation stages Parameter Noise level on dB (A) scale Special guidance Special guidance Free field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavement Standards MoEF Frequency Once every season (except monsoon) for each year of construction Duration Reading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averaged Location Near the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stage Measures Incase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out. Implementation Contractor through approved monitoring agencies	Measures	
Noise Level Monitoring Project stage Construction and operation stages Parameter Noise level on dB (A) scale Special guidance Free field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavement Standards MoEF Frequency Once every season (except monsoon) for each year of construction Duration Reading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averaged Location Near the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stage Measures Incase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out. Implementation Contractor through approved monitoring agencies	Implementation	Contractor through approved monitoring agencies
Project stageConstruction and operation stagesParameterNoise level on dB (A) scaleSpecial guidanceFree field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Supervision	Bangalore Development Authority (BDA)
ParameterNoise level on dB (A) scaleSpecial guidanceFree field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Noise Level Monitorin	lg
Special guidanceFree field at 1 m from the equipment whose noise level is being determined Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Project stage	Construction and operation stages
Equivalent noise levels using an integrated noise level meter kept at distance of 15m from edge of pavementStandardsMoEFFrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Parameter	Noise level on dB (A) scale
FrequencyOnce every season (except monsoon) for each year of constructionDurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during the road at an average distance of 10 km during the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Special guidance	Free field at 1 m from the equipment whose noise level is being determined. Equivalent noise levels using an integrated noise level meter kept at a distance of 15m from edge of pavement
DurationReading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, 	Standards	MoEF
hours and then averagedLocationNear the hot mix plant and near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Frequency	Once every season (except monsoon) for each year of construction
etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if presen Near sensitive locations such as school hospital etc. along the road at an average distance of 10 km during operation stageMeasuresIncase of noise levels causing disturbance to the sensitive receptors, management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Duration	Reading to be taken at 15 seconds interval for 15 minutes every hour for 24 hours and then averaged
management measures as suggested in the EMP shall be carried out.ImplementationContractor through approved monitoring agencies	Location	etc. along the road at an average distance of 10 km during Construction stage. Monitoring should be done at each additional hot mix plant, if present. Near sensitive locations such as school hospital etc. along the road at an
	Measures	C
Supervision Bangalore Development Authority (BDA)	Implementation	Contractor through approved monitoring agencies
	Supervision	Bangalore Development Authority (BDA)

M/s Ramky Enviro Engineers Ltd, Hyderabad

10.3 Block Cost Estimates for Environmental Protection

The cost of implementing mitigation measures works out to Rs. 902 Lakhs during Construction phase. The operational cost of the same is estimated for the first three years is around Rs. 16 lakhs.

Item	Assumptions	Cost in Lakhs				
A. Total Cost During Construction Phase						
Provision of Sewage and sanitation facilities for the construction camps, including	Lump Sum	330.00				
maintenance for 3 years						
Provision of Water Supply	Lump Sum	1.20				
Facilities for the construction						
camps						
Compensatory avenue plantation of thrice the number of trees to be cut and their fencing and maintenance for three years	Rs.900/Tree x 10311 Trees x 3	278.00				
Shrub plantation in the median for the entire corridor @500 saplings/km and their fencing and maintenance for 3 years	Rs. 500/Shrub x 500 Shrubs x 65 km	162.50				
Air Quality Monitoring at sensitive locations at an average distance of 10 km	Rs. 2000/location x 10 locations x 3 seasons x 3 years	1.08				
Water Quality Monitoring at major water bodies at an average distance of 25 km	Rs. 2500/location x 10 locations x 2 seasons x 3 years	1.50				
Noise Monitoring at sensitive locations at an average distance of 10 km	Rs. 500/location x 10 locations x 3 seasons x 3 years	0.45				
Soil Quality Monitoring at sensitive	Rs. 2000/location x 10	1.20				
locations at an average distance of	locations x 2 seasons x 3					
10 km	years					
Mobilization Charges	Rs. 75000/season x 3 seasons x 3 years	6.75				
Dust Suppression at Site	Lump sum	0.50				

Table 10.3: Cost Estimates for Environmental Management Plan

M/s Ramky Enviro Engineers Ltd, Hyderabad

Severances & Others (including

Rs 28,500/structure x 2

37.05

training, workshops, awareness	structure/km x 65 km	
campaigning etc.)		
Rainwater Harvesting Structures	Rs 28,500/structure x 2	37.05
	structure/km x 65 km	
Cost for plantation In equal area of	Rs 162746.83/Ha* 1.5 ha	24.42
forest area to be diverted.		
NPV Vale for Forest Areas	Rs. 1043000 x 1.5 ha	15.65
Construction of Sedimentation	Rs 50000/unit x 2 units in a	2.00
Tanks in construction yard near to	construction yard x 2	
Concrete mix plant and Hot mix	locations	
plant		
Provision for oil interception	Rs 10000/unit x 2 units in a	0.40
chambers in construction yard	construction yard x 2	
near to vehicle parking, fueling and	locations	
washing		
area and 2) hot mix plant		
Mangrove nursery establishment,	Rs. 50000/hectare * 1.50	2.25
maintenance, transplantation to	ha * 3	
site and maintenance up to		
maturing for thrice the area of		
mangrove area lost		
Total cost during construction pha	ISE	902.00 lakhs
B. Annual Cost During Operational	Phase during First Three Years	
Environmental Monitoring	Rs. 2000/location x 20	10.20
	locations x 3 seasons	
Air Pollution Monitoring at	Rs. 500/location x 20 locations	1.5
sensitive locations at an average	x 3 seasons	
distance of 10 km		
Noise Monitoring at sensitive	Rs. 75000/season x 3 seasons	2.25
locations at an average distance		
of 10 km		
Mobilisation Charges	Rs. 75000/season x 3 seasons	2.25
Rs.16.00 lakhs		

The compliance monitoring and the progress reports on environmental components may be clubbed together and submitted quarterly during the implementation period. The operation stage monitoring reports may be annual or biannual provided the Project Environmental Completion Report shows that the implementation was satisfactory. Otherwise, the operation stage monitoring reports will have to be prepared as specified in the said Project Environmental Completion Report. During the implementation period, a compliance report may include

description of the items of Environmental Management Plan (EMP), which were not complied with by any of the responsible agencies. It would also report the management and field actions taken to enforce compliance. It may however, be noted that certain items of the Environmental Management Plan (EMP) might not be possibly complied with in the field due to a various reasons. The intention of the compliance report is not to suppress these issues but to bring out the circumstances and reasons for which compliance was not possible (such as jurisdictional issues). This would help in rationalizing the implementation of the Environmental Management Plan (EMP) during the remaining duration of implementation. Solutions for further effective implementation should also come out as a result of the compliance monitoring reports.

10.4 Afforestation Plan

- > Affected Area Around 1.50 Ha.
 - Area proposed to be afforested 4.5 Ha (three times the affected area).
- Afforestation Program will be implemented through the Forest Department, BDA and regular monitoring will be ensured.
 - Land will be identified in consultation with state Forest Department, Bangalore.

• Species proposed for afforestation plan are *Avicennia officinalis*, *Avicennia alba*, Rhizophora *mucronata* and *Rhizophora aciculate* etc, but the final species list shall be carried out in consultation with State Forest Department.

10.4.1 Afforestation Procedure

- Spacing and estimation of planting stock will be done. Normal spacing of 1.5 m x 1.5 m will be followed – About 18430 Nos. of plants can be planted in 4.5 Ha. of land.
- > Three times the quantity of planting stock (81935 Nos.) will be produced in a nursery.
- Nursery will be maintained for 3 yrs to ensure sufficient growth to cover the proposed afforested land.
- > Seedlings will be then transferred to the identified sites.
- > Planting will be carried out during appropriate season (i.e. after heavy monsoons).
- > The survival of the plants will be periodically assessed & their growth will be monitored.

10.4.2 Cost Estimates of Afforestation

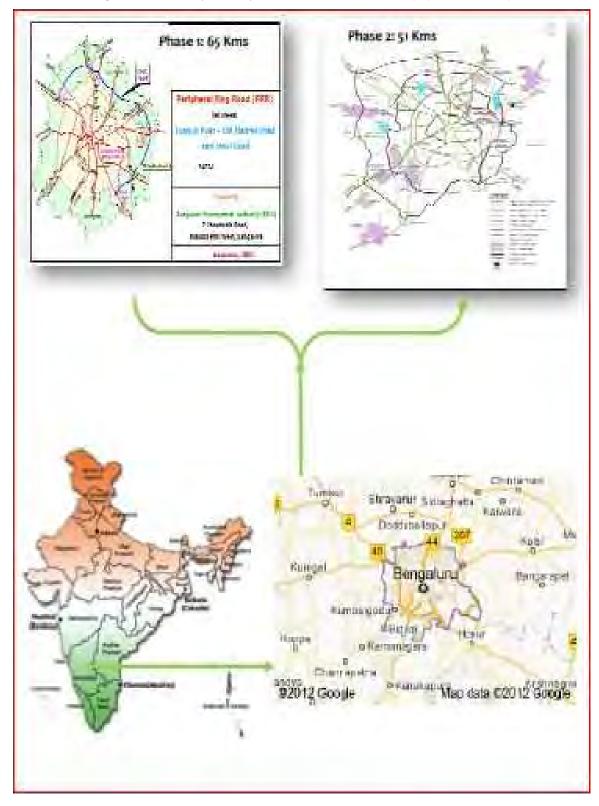
Cost of Afforestation including sourcing, maintaining in the nursery for 3 years and transplantation to the site and further maintenance up to maturing.

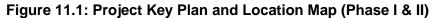
Total cost for Afforestation Program (4.50 Ha) - Rs. 25, 00, 00.00.

CHAPTER 11

SUMMARY and CONCLUSION

11.1 Introduction


The Proposed Peripheral Ring Road (PRR) starts at CH 17 on Bengaluru - Pune National Highway (NH4) which is about 15om from a major bridge across Arkavathy River. The 116 Km Peripheral Ring Road (PRR) is planned by Bengaluru Development Authority (BDA) to circumnavigate the city. The project will be undertaken in two phases - Phase | starting from CH. Km o.ooo to CH: Km 64.5 (65) and Phase II covering the remaining length. The project links the major highways, district roads right from Tumkur, Mysore, Old Madras and Hosur Roads.


The Peripheral Ring Road (PRR) alignment passes through plain and rolling terrain and Greenfield site cutting across the major roads of Bengaluru. There are low lying areas along the project road stretch marked by a series of tanks. The Arkavati River flows past the proposed road at a distance of about 300 m towards Tumkur from the starting point of the project.

S.No	Planning District No	Name	Population 2001 (Lakh)	Area (Sq.km)	# Gross Population Density (No./ Sq Km)	Proposed major land use as per revised Master Plan – 2015
1	305	Bavalakere	0.12	27.31	439	Residential
2	306	Heserghatta	0.18	42.29	426	Green area
3	307	Yelahanka	0.98	38.71	2532	Residential
4	308	Bettaalasuru	0.21	35.30	595	Green area
5	309	Tanisandra	0.32	45.83	698	Residential
6	310	Bagaluru	0.21	48.44	430	Agricultural/Residential
7	312	Avalahalli	0.26	37.70	690	Residential/Commercial/ Industrial
8	314	Sadar Mangala	0.29	20.10	1443	Residential/Industrial
9	315	Whitefield	0.91	38.84	2343	Residential/ High-tech
10	316	Varthur	0.35	52.00	673	Residential/High tech
11	317	Dommasandra	0.20	41.69	480	Agricultural/Green area
12	319	Electronic city	0.46	36.60	1257	High tech
	Total		4.41	464.81		

Table 11.1:Village-Wise Land Acquisition Details for Peripheral Ring Road (PRR)

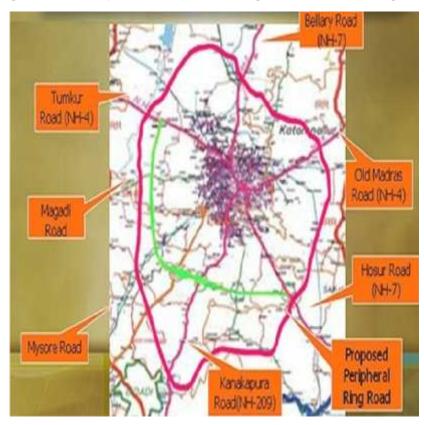
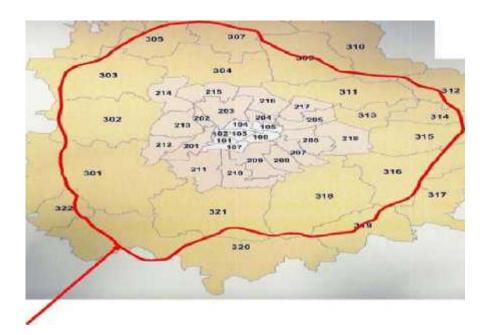



Figure 11.2: Proposed Peripheral Ring Road around Bangalore

Figure 11.3: Planning Districts along with PRR Alignment (Phase I & II)

Peripheral Ring Road

11.2 Need of the Project

The need of the project is as follows:

- Bangalore Development Authority (BDA) has proposed to divert the Intracity Traffic through Peripheral Ring Road (PRR) around the Bangalore City beyond the existing Outer Ring Road (ORR)
- To reduce the traffic congestion, Pollution Intensity and Travel time

11.3 Land Requirement

The Peripheral Ring Road (PRR) runs in a cropland predominantly (60%) and less extent in Agriculture plantation (17%), commercial plantation (16%). The extent of land required for Peripheral Ring Road (PRR) including enabling services and interchanges is given hereunder.

65 Km: 975 acres of land (15 acres / Km)

Interchanges

- Major road crossings: 12 at 18 Acres/Each: 216
- Minor road crossings: 60 at 1 Acre/Each: 60
- Rail crossings: 6 at 9 Acres/Each: 54 Truck terminals at 10 Km. interval: 12 at 7 Acres/Each: 84 Total: 2049 Acres

11.4 Alignment of Peripheral Ring Road

The Alignment of Peripheral Ring Road (PRR) features are given in **Table 1.2.** The alignment crosses the conurbation areas at 5 locations and avoids forest land in most of the places except at 2 locations. The alignment chosen is away from the BMIC Corridor (NICE) with sufficient distance.

S. No	Description	Technical Details	
I. Gene	ral Features		
1	Length	65 Km 1 st phase	
2	Location	14-22 Km. from the city center & 2.8 – 11.5 Km from the existing Outer Ring Road (ORR).	
3	Crossing	10 major roads, 5 railway lines, 8 water bodies	
4	Drainages	48 major with lone river vrishabhavathi at ch 87.45 Km. & 20 minor.	
II. Terra	ain aspects		
6	Elevation	Highest: RL 941 m above MSL about 1 Km Wof Pillaganahalli	
7	Lowest	RL780 m above MSL 1 Km Westof Hemmigepur.	
III. Alig	nment running in existin	g land use	
1	Passing on existing roads	2.90 Km.	
2	Conurbation area	8.92 Km. (5 locations)	
3	Forest area	1.50 Km. (2 locations)	
4	Most of the stretch has ruling gradient except between Bannerghatta and Kanakapura road, where deep cut and fill is to be done.		

Table 11.2: Features of Peripheral Ring Road (PRR)

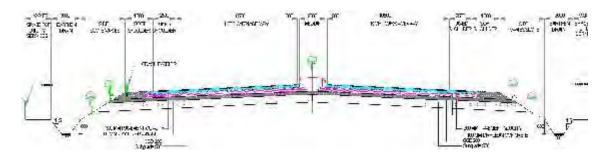


Figure 11.4: Cross section of Six Lane carriageway

11.5 Lane Width

The Peripheral Ring Road (PRR) each single lane width is about 3.50 m as per Geometric design standards for rural Highways for multi-lane pavements (IRC 73 1980). Proposals at interchanges, important road crossings, important rail crossings & water bodies are shown in the table 1.3, 1.4, 1.5 & 1.6.

S. No	Chainage	Intersecting Road Name	Type o f Proposal	
1	0	Tumkur Road	2 level Flyover + surface level rotary	
2	4992.807	Hesarghatta Road	Grade separator + surface level rotary	
3	15085.349	Doddaballapur	Flyover + partial cloverleaf structure + ramps	
4	19301.547	Bellary Road	Flyover Underpass + surface level rotary	
5	26254.711	Hennur Road level road	Underpass with cloverleaf structure + surface	
6	37028.187	Old Madras Road	Flyover with Cloverleaf structure	
7	41110.030	Whitefield-Hoskote Road	Underpass Road	
8	5 3486.300	Hosekote-Anekal Road	Elevated road with Cloverleaf structure	
9	56174.569	Sarjapur Road	Flyover + Underpass	
10	64730.987	Hosur Road	Flyover with Cloverleaf structure	

S. No	Intersecting Road	PRR Chainage
1	Tumkur Road (NH 4)	0
2	Hesarghatta Road (SH)	4992 .807
3	Doddaballapur (SH 9)	15085.349
4	Bellary (NH 7)	19301.547
5	Hennur Road	2625 4.711
6	Old Madras Road (NH 4)	3695 5.967
7	Whitefield Road	41134.516
8	Hosekote – Anekal	53410.008
9	Sarjapur Road	56098.277
10	Hosur(NH 7)	64654.694

Table 11.4: Important Road Crossings

Table 11.5: Important rail crossings

S. No	Railway Crossing	PRR Chainage	Railway Chainage
1	Bangalore - Tumkur	4861.919	15/657 from Bangalore city station
2	Bangalore - Doddaballapur	15808.266	19/400 from Bangalore city station
3	Bangalore - Chikkaballapur	16711.309	002/642 from Yelahanka station
4	Bangalore - Chennai	43306.384	331/652 from Chennai station
5	Bangalore - Salem	59386.421	189/187 from Salem station

Table 11.6: Water bodies

S. No	Name of the Water Body	
1	Jaraka Bande Kavalu Kere	
2	Yelahanka Tank	
3	Tirumanahalli Tank	
4	Biderana Agrahara Tank	
5	Chikkabanahalli Tank	
6	GunjurTank	
7	Kacharakanahalli Tank	
8	Chikkanagamangala Tank	

11.6 Source of Water & Storage

The total water requirement for the Peripheral Ring Road (PRR) constructional activities, utilities and green belt requirement is estimated around 3.5 MLD. The source of water is from Bore well water and canal water which is transported through tankers over to the designated places of the project. The desired storage capacity of water proposed to be around 2000 m3. To ensure 24 hour water supply in zone, a 25 m3 capacity of Storage Reservoir (SR) has been planned at constructing area of Peripheral Ring Road (PRR). **11.7 Man Power**

The manpower requirement during the construction stage is basically the construction labour.

Table 11.7: Manpower – During Construction Phase				
Development Year Construction Labour				
Year1	575			
Year 2	1000			

11.8 Power Source

Initially power would be sourced from KPTCL to provide Uninterrupted Power Supply to the contractor during constructional phase.

11.9 Raw Material

The Raw materials required for the construction of Peripheral Ring Road (PRR) at Benguluru would fall under the categories of constructional activities which would be used as follows. Sub-grade: 500 mm, Granular sub-base: 300 mm, Wet mix macadam: 300 mm, Dense Bituminous macadam: 110 mm, Semi-dense Bituminous macadam: 25 mm.

11.10 Description of the Environment

The baseline data was collected for various environmental components viz. Air, Noise, Water, Land and Socio-economic so as to compute the impacts that are likely to be arising out of the constructional activities covering an area of 10 km radially from the proposed Peripheral Ring Road (PRR) project. Ramky Enviro Engineers Ltd has performed an REIA (Rapid Environmental Impact Assessment) study based on the monitoring data of Air, Water, Noise and Soil collected for the Winter Season (December (2009) to February (2010) and also collected the data through primary and secondary sources.

The proposed Peripheral Ring Road (PRR) falls between the following geographic coordinates:

Latitude: 12⁰ 51' 03.6" to 13⁰ 07' 44.4"E Longitude: 77⁰ 28' 48" to 77⁰ 46' 51.6"N

11.10.1 Air Environment

Wind Speed & Direction

A glance at the average 24-hour wind rose diagram for the month of December 2009 reveals that the most dominant wind direction is E followed by NE,N,NNE and ENE during this time period with percentage of 41.4 %, 27.69 %, 10.48%, 3.63 %, and 2.15% respectively. Calm conditions prevailed for 9.41% of the total time.

On keen analysis of the data recorded for the month of January 2010 reveals that the most predominant wind direction was E with the winds blowing for 38.71 % of the total time which is followed by SE, NE, N and NNE with a percentage frequency recording of , 13.44, 11.83, 5.38, 5.24. Wind was also recorded from other all directions which were comparatively. Calm conditions prevailed for 9.68 % of the total time.

Keen observation of the data recorded for the month of February 2010 reveals that the most predominant wind direction was E with the winds blowing for 45.98 % of the total time which is followed by N,NE,ENE and SE with a percentage frequency recording are 18.45%, 13.39%, 3.57%, 2.83% respectively. Calm conditions prevailed for 9.82 % of the total time.

Air Quality

The PM₁₀ concentration ranges from 80.5 to 89.0 μ g/m³, PM_{2.5} from 40.4 to 46.8 μ g/m³, NOx ranges from 22.6 to 32.5 μ g/m³, SO2 ranges from 12.4 to 19.6 μ g/m³. However, all parameters in ambient air are within the recommended air quality standards prescribed by the CPCB.

11.10.2 Noise Environment

Day-time noise levels were found to vary between 50.1 dB (A) and 79.0 dB (A). The maximum day-time noise level of 79.0 dB (A) was observed. It is observed that at most of the locations the day-time noise levels exceeded the permissible limit of 55 dB (A) specified by CPCB for residential areas. This noise is mainly from vehicular traffic and local domestic/commercial activities.

Night-time noise levels were found to vary between 40.2 dB(A) and 55 dB(A). The maximum night time noise level of 55.0 dB (A) was observed. Most of the locations are surrounded by residential houses. It is observed that at all the locations, the nighttime noise levels exceeded the permissible limit specified by CPCB for residential areas. The main noise sources were, again, vehicular traffic and local domestic / commercial activities.

11.10.3 Water Environment

The groundwater occurrence for the project section is in mainly laterites formations. In laterites, the inherent porosity, jointed nature and fractures control water bearing capacity. In granites and granite gneiss formation ground water occurs under unconfined, Semi-confined and confined conditions in weathered and fractured zones. Chloride content of the ground water is within permissible limits and bicarbonates predominate over sulphates and nitrates. Ground water quality is also free from fluoride and alkali hazards.

11.10.4 Land Environment

The soil of the project region is lateritic, alluvial and marshy. The lateritic soils are predominant along the project section and characterized by high organic content, less of calcium and phosphorus. The soils are well drained from surface and acidic in nature. The alluvial soils occur in patches and are characterized by poor organic matter, and low calcium, phosphorus and potash content. These soils are well drained and acidic in nature.

It was observed that, the soil samples were neutral in nature, with a pH range of 7.0 to 7.7. The percent of moisture content in the soil (3.92%) was the lowest among other samples. The essential parameters like nitrogen and phosphorous are fond to be better and sufficient respectively. For potassium the samples shows a wide range of 56 to 1043 mg/kg.

11.11 Environmental Management Plan

Environmental Management Plan for the proposed project is as shown in the table 1.8.

M/s Ramky Enviro Engineers Ltd, Hyderabad

Activity Environmental Impac		Mitigation Measures	Responsibility	
Pre – construction phase				
Land Acquisition, Clearing encroachments and R&R	Loss of buildings	The land acquisition would be in accordance with the RAP and entitlement framework. All R&R activities are to be completed before starting the construction.	NGOs, PIU	
Relocation of Utilities and common property resources (CPR)	Damage to utilities, Inconvenience to Public	All the utilities and common property resources being impacted due to the project will have to be relocated with prior approval of the concerned Departments/Agencies before construction starts.	Contractor, PIU	
Debris disposal site identification	loss of productive lands or natural habitats	Selection of the disposal sites will be carried out in consultation with the State Pollution Control Board, Revenue Department and Forest Department in order to ensure that no natural drainage, productive lands or natural habitat is adversely impacted due to disposal. Preferably, debris disposal site would be identified in barren, infertile land.	Contractor, PIU	

Table 11.8: Environmental Management Plan (EMP)

Rapid Environmental Impact Assessment Studies for PRR

Establishment of Stone	Air, water, noise	Specifications of Stone crushers, hot mix plants and	Contractor
Crushers, Batching Plants, Hot-	and soil pollution	batching plants to be established for the project	
mix plants		should comply with the requirements of the	
		relevant State/Central Pollution control Board	
		legislations.	
Coloction of construction ushiples		All the vehicles machinery and equipments to be	Constructor DILL
Selection of construction vehicles, machinery and equipments	Air and noise pollution	All the vehicles, machinery and equipments to be engaged for the construction work should be	Contractor, PIU
machinery and equipments		attached with the latest, advanced pollution control	
		measures available in the country and those should	
		conform to the relevant Indian standards.	
Materials (Sand, earth and	Loss of productive land, noise	Contractor should procure materials from	Contractor, PIU
aggregates) sourcing	and air pollution	licensed sources.	
		Every detail (Location, ownership, agreement,	
		redevelopment Plan) of the material sourced	
		should be intimated to CSC for periodic	
		inspections so that appropriate measures are	
		implemented at site towards safe operation and	
		minimizing impacts.	

Haul roads maintenance	Air and noise pollution	During the inception of the project, Contractor should identify the network of roads (especially the village roads) to be used for haulage of construction materials. Strategy for the maintenance of identified haul road stretches is to be prepared so that regular maintenance is carried out to those stretches by the Contractor for easy plying of construction vehicles as well as the regular local commuters.	Contractor, CSC, PIU
Selection of Borrow areas	Air, water and noise pollution, loss of productive lands	Compliance to all the State norms towards operation and environmental protection of borrow areas is the sole responsibility of the Contractor. CSC will inspect locations intended for operation and mitigation measures will be instructed towards satisfactory redevelopment. Inspection to the borrow areas will be carried out by raising Request for Inspection (RFI) by the Contractor for each of the borrow areas and obtain subsequent approval from CSC.	Contractor and CSC

Selection of Stone Quarries	Air and noise pollution, loss of productive lands	Contractor will identify the stone quarries in consultation with the Mining Department. A comprehensive Quarry Management Plan need to be prepared incorporating Environmental and Safety Management Plan with special emphasis to Quarry redevelopment for approval from CSC.	Contractor
Construction Phase			
1. Impact on Soil Quality			
Removal of vegetation cover, Excavations of borrow pits	Increased soil erosion, loss of top soil.	 Further Top soil from borrow areas has to be stripped to a specified depth and stored in stockpiles of height not exceeding 2 meters with proper covering. This shall be restored for rehabilitation of borrow pits. In borrow pits, the depth of the pit should be regulated so that the sides of the excavation will have a slope not steeper than 1 vertical to 4 horizontal from the edge of the final section of bank. The device for checking soil erosion include the formulation of sediment basins, slope drains etc. Such works and maintenance thereof will be deemed as incidental to the earthwork. 	Contractor and CSC

		Cutting of trees will be carried out in phases and compensatory afforestation to start at the earliest with sufficient protection measures.	
Acquiring of extra RoW and construction of realignments, Use of productive lands for storing, stock yards and workers camp, Borrowing of earth	Loss of Productive topsoil	The topsoil from all areas of cutting and areas of storing and stock yards and workers camp have shall be stripped to a specified depth of 150 mm and stored in stockpiles of height not exceeding 2 meters with proper covering. The stored topsoil will be spread back to restore the productivity of the exhausted borrow areas. Also the accumulated soil will be utilized for developing median plantation and raising turfs in the embankment slopes. The exhausted borrow areas could be developed into water bodies for local use, practicing fishery.	Contractor and CSC
Movement of Heavy Vehicles	Compaction of productive top soil	Construction vehicles, machinery and equipment shall move, or be stationed in pre- identified designated areas only. If operating from temporarily hired land, it will be ensured that the topsoil for agriculture remains preserved & not get compacted.	Contractor and CSC

Spillage of fuel, lubricants and hazardous chemicals	Contamination of soil and negative impact on the growth of the floral vegetation and faunal distribution.	 Vehicles and machinery are maintained and refilled in such a fashion that fuel spillage does not contaminate the soil. Fuel storage and refilling sites should be kept away from cross drainage structures and important water bodies. All spills shall be disposed off as desired and the site shall be fully cleaned before handing over. Soil quality monitoring should be conducted as per Environmental Monitoring Plan to ascertain level of contamination. 	Contractor and CSC
Disposal of construction wastes	Loss of productive lands	The construction wastes should be dumped in selected pits, developed on infertile land. All applicable waste disposal norms to be followed. Waste land to be preferred for construction debris disposal.	Contractor and CSC

2. Impact on Water Quality			
Surface runoff from the construction site, dumping of construction debris in or nearby water bodies	Increased turbidity of water. Deterioration of Water quality of Community water sources. Adverse impact on aquatic ecosystem.	No labour camps, stone crushers, hot mix plants and other heavy machinery should be located near to water bodies. No discharge from such establishments should follow their path into nearby water bodies. Dumping of debris in or nearby water bodies to be strictly avoided. Waste products must be collected, stored and taken to approved disposal sites as per prevailing disposal norms. Runoff from the construction site should be passed through silt traps. Pitching, stabilization of soil and slope protection measures should be taken up to reduce erosion of soils. Water quality monitoring should be conducted as per Environmental Monitoring Plan so that appropriate measures are taken up towards abatement of pollution.	Contractor and CSC

Spillage of fuels and lubricants, spillage of hazardous chemicals	Deterioration of water quality of community water sources. Adverse impact on aquatic ecosystem.	Appropriate drainage arrangements with catch drains and catch pits designed to safely drain out the hazardous chemicals should provided. To avoid spillage of fuel and lubricants, the vehicles and equipment shall be properly maintained and repaired. Maintenance to be carried out on impervious platforms with spill collection provisions. Surface run off from vehicle parking, washing and fueling areas and hot mix plant areas has to be passed through oil interception chambers and the oil will be skimmed off manually from the chamber and will be disposed off in approved landfill sites. The Schematic drawing of Oil inter caption chamber is presented as Figure 10.1 . Water quality monitoring should be conducted as per Environmental Monitoring Plan to detect any contamination or spillage.	Contractor and CSC
Acquisition of water sources like wells, tube wells & ponds	Loss of drinking water and irrigation water sources.	Any source of water for the community such as ponds, wells, tube-wells etc. lost incidentally shall be replaced immediately.	Contractor and CSC

Construction of bridges across major water bodies	Water shortage in downstream water users.	The construction of bridges across major water bodies has to be done by serving prior notice to the users. Care should be taken to avoid mixing of construction materials with water channel such that it may affect the downstream users or water supply schemes.	Contractor and CSC
Construction of embankments	Blocking of cross drainage and resultant flooding.	Earth, stone or any other construction material should be properly disposed off so that the flow of water in cross drainage channels is not blocked.	Contractor and CSC
Absence of proper sanitation and waste disposal in construction camps		Construction laborers' camps shall be located away from the habitation and from major water bodies. Adequate sanitary facilities, drainage, washing and toilet facilities with septic tanks and refuse collection and disposal should be provided to the workers. The provision of water supply and toilet facilities should be made as per the stipulated guidelines in the Indian Labour Act. Water quality monitoring should be conducted as per Environmental Monitoring Plan.	Contractor and CSC

Use of water for construction from community water sources	Scarcity of water to the community	Arrangement for supply and storage of water will be made by the contractor in such a way that the water availability and supply to nearby communities remain unaffected. If a new tube-well is to be bored, proper sanction and approval by Ground Water Department is needed. The wastage of water during the construction should be minimized. In case of tapping water from community sources, consent to be obtained from local Administration for the same.	
Construction of Impervious bituminous pavement and drains	Reduction in area for ground water recharge	Rain water harvesting pits will be constructed at average distance of 500 m. The pits should be atleast 3 - 5 m above the highest ground water table. The schematic diagram of Rain water harvesting pit is presented as Figure 10.2 .	Contractor and CSC

Gaseous	emission	from	Deterioration of ambient air	All vehicles, equipment and machinery used for	Contractor and CSC
construction	vehicles	and	quality and adverse health	construction should be fitted with latest air	
construction vehicles and quality and adverse health machinery impacts.	pollution control equipments and should be regularly maintained to ensure that the emission levels are as per norms of PCB. Idling of delivery trucks or other equipment should not be permitted during periods of unloading or when they are not in active use. The human settlements should be at least 500 m down windward direction of Hot (asphalt) mix				
				plant. The construction operations during nights, especially in the winter season should be carried out under restricted conditions.	
				Air quality monitoring should be conducted as per Environmental Monitoring Plan to detect any deterioration in air quality due to the construction activities.	

Dust generation due to material	Dust emissions will have	All precautions to reduce the level of dust	Contractor and CSC
handling, operation of crushers	adverse effect on the health of	emissions from the hot mix plants shall be taken.	
and hot mix plants, movement of	construction workers as well as	The hot-mix plants should be sited at least 500m	
construction vehicles and	the public in the surrounding	from the nearest habitation and from major water	
construction activities	Communities. Dust settled on	bodies. They should be fitted with dust extraction	
	leaves may reduce growth rate	units. Water should be sprayed on the earth	
	of the plants.	mixing sites, asphalt mixing site and service roads.	
		5 / 1 5	
		During sub grade construction, sprinkling of water	
		should be carried out at least twice a day on a	
		regular basis during the entire	
		construction period especially in the winter and	
		summer seasons. Special attention should be given	
		in the sections where the alignment passes through	
		sensitive areas such as schools, hospitals and	
		urban areas. As soon as construction is over	
		the surplus earth should be utilised to fill up low-	
		lying areas. In no case, loose earth should be	
		allowed to pile up along the alignment. Vehicles	
		delivering material should be covered.	
		Air quality monitoring should be conducted as per	
		Environmental Monitoring Plan.	

Noise generated from	Since the noise Generating	Construction contract should clearly specify the use	Contractor and CSC
construction vehicles, asphalt plants and equipments	Since the hoise Generating activities are localized and intermittent, no serious impact on human health is anticipated. Residential areas nearby the construction site may experience increase in night time ambient noise levels.	 Construction contract should clearly specify the use of equipment emitting noise of not greater than 90 dB (A) for the eight hour operation shift. The citing of construction yards should be done leaving at least 100 m distance from any residential areas which will allow noise to attenuate. The main noise producing sources such as the concrete mixers, generators, grader etc. should be provided with noise shields around them. The noise shields can be any physical barriers, which is effective in adequate attenuation of noise levels. A 3m high enclosure made up of brick and mud with internal plastering of a nonreflecting surface will be very effective in this regard. For protection of construction workers, earplugs should be provided to those working very close to the noise generating machinery. At construction sites within 150 m of human settlements, noisy construction should be stopped between 10:00 pm and 8:00 am Noise level monitoring should be conducted as per Environmental Monitoring Plan. 	

Removal of trees for	Biodiversity will be negligible	Small trees shall be transplanted wherever	Contractor and CSC
Construction of road and since most of the trees are of		possible to minimise the impacts of loss of	
construction of realignments.	common occurrence. Loss of	trees. Trees should be removed in phases.	
	trees will lead to Increase in	Areas of tree plantation cleared will be	
	soil erosion, loss of shade	replaced according to Compensatory	
	and other benefits of trees,	Afforestation Policy under Forest Conservation Act-	
	and decline in air quality.	1980.	
		The compensatory plantation should be carried out	
		in consultation with the State Forest	
		Department. Adequate care of the	
		compensatory plantation should be taken up so	
		as to achieve optimum survival rate.	
		Landscaping should be done with a lag of 3 to 4	
		months from the start of the work on any section.	
		The section should be deemed to be complete	
		when the landscaping is over.	
		Survival rate of plants must be included in the	
		contract specifications so as to ensure that the	
		compensatory plantation achieves the objective	
		of compensating lost trees.	
		Indigenous and endemic tree species suitable for	
		the area should be planted at the onset of monsoon	
		season. The plants shouldbe provided	
		with adequate protection from	
		animals and proper monitoring should be	
		carried out to ensure their growth.	

Operational Phase			
Improvement of road geometry and pavement condition	Less chances of accidents.	Proper implementation of traffic rules by the traffic Police.Proper maintenance of traffic signs and implementation of accident care facilities along the road by the project implementation agency.	Contractor, PIU and Police
Improvement of road surface and its maintenance	Reduced dust generation from road. Increased Vehicular emissions due to increased traffic.	Proper implementation of vehicular emission control rules by the Motor Vehicles Department. Roadside tree plantation to be restored and maintained as per the compensatory plantation plan. PM 10, 2.5, CO, HC, SO2, and NOx to be monitored as per Environmental Monitoring Plan.	Contractor, PIU and Motor Vehicles Department

Increase in traffic	Increase in the Ambient noise	Development of greenbelt comprising selected	Contractor, PIU and
	levels, especially during night time along the project road.	species of trees with high canopy along the	Police
		project road for attenuation of noise.	
		Use of horns should be restricted at sensitive locations like schools and hospitals through the use of appropriate signboards along the road. Use of air horns should be minimised during night.	
		Noise barriers should be provided along the road at sensitive locations such as hospitals, schools, residential areas, courts etc.	
		Noise monitoring should be conducted as per Environmental Monitoring Plan.	
Increase in embankment height		The cross drainage system and the flood water	Contractor and PIU
and Improvement of flood water drains.	will not take place.	drains should be periodically cleared.	
Construction of Rain water harvesting pits at an average distance of 500m.	Enhanced ground water recharge.	The rain water harvesting pit opening should be periodically cleaned during operation phase such as to ensure enhanced ground water recharge. The schematic diagram of Rain water harvesting pit is presented as	Contractor / BDA.
Compensatory plantation	Improved biodiversity and aesthetics	The re-plantation scheme, containing Indigenous and endemic tree species suitable for the area, should be strictly implemented.	Contractor and PIU

Mangrove plantation and maintenance	Restoration of mangrove areas	The re-plantation and maintenance scheme at mangrove locations should be strictly followed.	Contractor and PIU
Movement of vehicles with higher speed along protected forest areas	Impact of traffic on wild animals.	Drivers should be warned with proper sign boards for speed restriction within the forest areas especially along the possible animal crossing locations and about the major wildlife habitats near by the highway. Usage of air horns should becompletely avoided within protected forest areas both during day and night time. Forest officials should carry out frequent patrolling along the road in the protected areas to avoid exploitation of forest resources / teasing of animals by road commuters.	BDA/ State Forest Department
Spillage of hazardous chemicals due to accidents	Soil and water bodies nearby the accident site may get contaminated. Safety risk to the public nearby the accident area.	The rules as defined in Environmental (Protection) Act, 1986 should be complied For delivery of hazardous substances, three certificates namely permit license,driving license and guarding license issued by Transport Department should be maintained. Vehicles carrying hazardous substances should display mandatory safety signs. In case of spillage, it should be reported to relevant department and their instructions should be followed Cleaning of the spills at the accidental site should be carried out as per regulations.	Motor Vehicles Department, Police

Improved safety measures and improved traffic management	The chances of accidents would be reduced	Traffic management plan to be developed, especially in congested locations.	PIU, Motor Vehicles Department and Police
		Traffic control measures including speed limits to be enforced strictly.	
		RoW should be properly marked and further encroachment of RoW should be strictly prevented. Road side vendors should be restricted to designated areas only.	

11.12 Benefits of the Project

- To accelerate regional economic development in terms of industry, tourism and agriculture,
- Let To reduce vehicle operating and maintenance costs by improving road conditions,
- To reduce travel time by minimizing congestion in urban stretches and providing a four lane facility over there,
- To minimize road accidents by increasing road widths, improving intersections and road geometry,
- The project may also generate local employment opportunities through the construction activities and local business.
- Abatement of ambient air and noise pollution in comparison to a do-nothing situation.
- Increase in safety due to construction of median in urban sections between two directions of traffic flow.
- Construction of Road Over Bridge (ROBs) shall reduce travel time and enhance smooth flow of the traffic and Project facilities included in the project preparation are Bus Bays, Truck Lay Bye, and Road Street Lighting etc.

CHAPTER 12 DISCLOSURE OF CONSULTANTS

The consultants for this project are Ramky Enviro Engineers Ltd, a Sci-Tech organization involved in areas of Environmental Consultancy, Waste Management and provision of Integrated Environmental Services to Industries and Industrial Parks.

The Company has over 2000 employees in various sectors of which over 600 employees are post graduates and about 15 employees are Ph.D.s The present report was carried out under the guidance of:

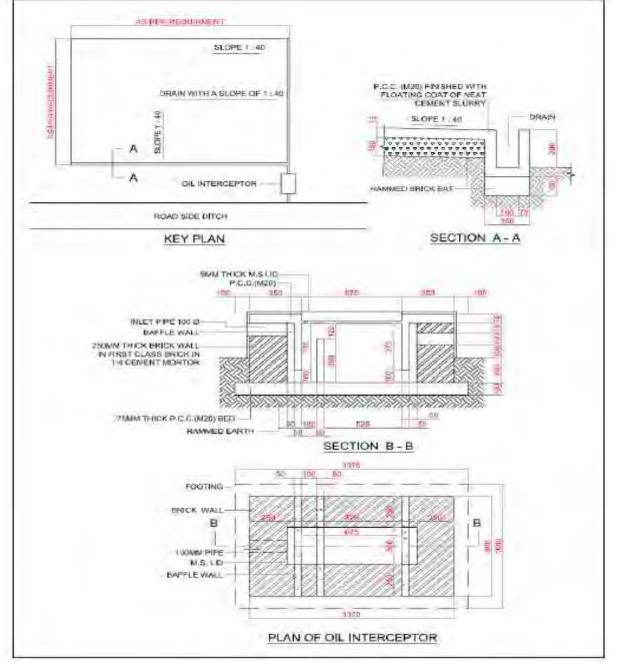
- 1. Dr. K.S.M.Rao, Ph.D. (Chemistry)
- 2. Dr. B. Chakradhar, Ph.D. (Chemical Engineering)

Dr. K.S.M.Rao who served in NEERI, Nagpur from 1977 to 1990 has worked as Director at Vimta Labs Ltd., Hyderabad and SGS India Ltd., Hyderabad, Mumbai and Delhi. He has an experience of conducting over 350 EIA reports, Designing over 50 ETPs and over 25 Risk assessment reports. He is a lead Environmental Auditor for ISO 14000, ISO 9000, OHSAS 18001, SA 8000, SQF 2000.

Dr. B. Chakradhar served as Scientist in NEERI Nagpur (1981 to 1995) and later as Deputy Director at Regional Research Laboratory, Bhopal (1995 to 2008). He has an experience of conducting over 200 EIA reports, over 40 Risk assessment reports for various chemical industries and has experience in conducting environmental Audits.

Project team involved in this report was:

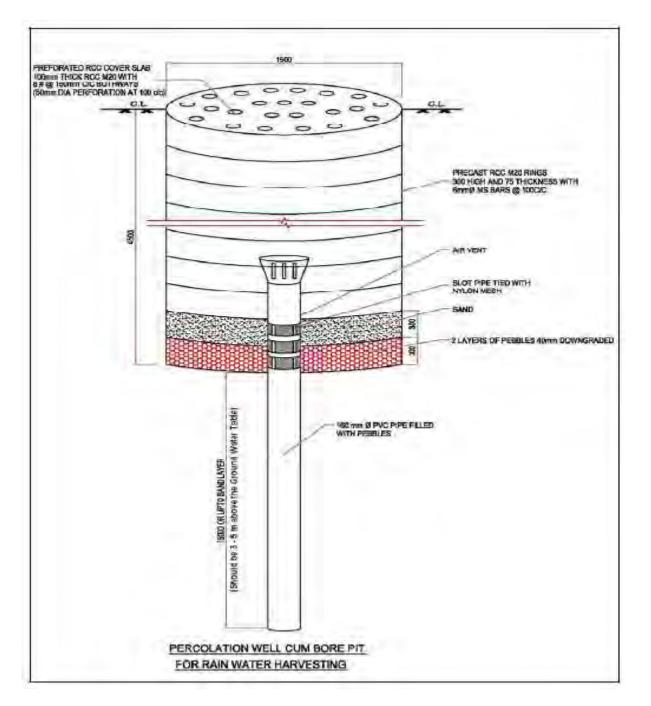
- 1. Dr.G. Dasaratha Ram, Ph.D. (Envi. Science)
- 2. Mr.V.Vijay Kumar M.Sc (Chemistry), M.Sc (Envi. Science)
- 3. Mr.Hemanth Rajkumar MTech., (Env)
- 4. Ms. Sushama Mtech (Env)
- 5. Mr. Girish BE (Env)


The Analysis was carried out in the Laboratory of Hyderabad Waste Management Project (HWMP) a subsidiary company under Ramky Enviro Engineers Ltd which is recognized by Ministry of Environment and Forests vide notification dated 9th January 2008 as Environmental Laboratory under the EP-Act 1986 (29 of 1986). Team involved in the analysis of air, water, soil and other samples are:

- 1. Mr. Tiwary M.Sc. (Biochemistry)
- 2. Mr. Vishwanath M.Sc. (Chemistry)

The complete report has been carried out by the above team taking help of some external consultants in the areas of socio-economics and flora-fauna studies.

In this present REIA report, the prescribed TOR's have been complied and the data submitted is factually correct.



Annexures

Schematic Diagram of Oil Interception Chamber

Schematic Drawing of Rain Water Harvesting Pit

Public Hearing

<u>ದಿನಾಂಕ 06.02.2014 ರಂದು ಪೂರ್ವಹ್ನ 11.00 ಗಂಟೆಗೆ ಬೆಂಗಳೂರು ನಗರ ಅಭಿವೃದ್ದಿ ಪ್ರಾಧಿಕಾರದಿಂದ ಪ್ರಸ್ಥಾಪಿತ</u> -ತುಮಕೂರು ರಸ್ತೆಯಿಂದ ಬಳ್ಳಾರಿ ರಸ್ತೆ, ಹಳೆ ಮದ್ರಾಸ್ ರಸ್ತೆ ಹಾಯ್ದು ಹೊಸೂರು ರಸ್ತೆ ಸಂಪರ್ಕಿಸುವ ಎಂಟು ಲೇನ್ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆ (ಹಂತ-1) ರ ರಿಂಗ್ ರಸ್ತೆಯ ಚೈನೇಜ್ 0.00 ಕಿ.ಮಿ ಯಿಂದ ಚೈನೇಜ್ 64.5 (65) ಕಿ.ಮಿ) ಸಂಪರ್ಕಿಸುವ ರಸ್ತೆಯ ನಿರ್ಮಾಣದ ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಸಭೆಯ ನಡವಳಿಗಳು.

ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಸಭೆ ನಡೆದ ಸ್ಥಳ	ಬಿಳಿಶಿವಾಲೆ, ಬಿದರಹಳ್ಳಿ ಹೋಬಳಿ, ಬೆಂಗಳೂರು ಪೂರ್ವ ತಾಲ್ಲೂಖು ಬೆಂಗಳೂರು		
ಹಾಜರಿದ್ದ ಪರಿಸರ ಸಾರ್ವಜನಿ	ಕ ಸಭೆ ಸಮಿತಿಯ ಸದಸ್ಯರುಗಳು		
ಡಾ. ಜಿ.ಸಿ. ಪ್ರಕಾಶ್, ಭಾ.ಆ.ಸೇ, ಜಿಲ್ಲಾಧಿಕಾರಿ, ಬೆಂಗಳೂರು ನಗರ ಜಿಲ್ಲೆ . ಬೆಂಗಳೂರು, ಕರ್ನಾಟಕ ಸರ್ಕಾರ.	ಅಧ್ಯಕ್ಷರು		
ಶ್ರೀ. ಎಮ್ .ಕೆ. ಪ್ರಭುದೇವ್, ಹಿರಿಯ ಪರಿಸರ ಅಧಿಕಾರಿ, ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿ, ಬೆಂಗಳೂರು ಪೂರ್ವ, ಬೆಂಗಳೂರು.	ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿಯ ಪ್ರತಿನಿಧಿ		
ಶ್ರೀ. ಷಣ್ಮುಖಪ್ಪ , ಪರಿಸರ ಅಧಿಕಾರಿ, ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿ, ಬೆಂಗಳೂರು ಮಹದೇವಮರ	ಸಂಚಾಲಕರು		
ಹಾಜರಿದ್ದ ಅಧಿಕಾರಿ	ಗಳು ಹಾಗೂ ಇತರರು		
ಅಧಿಕಾರಿಗಳ ಪಟ್ಟಿ	ಅನುಬಂಧ-1		
ಯೋಜನೆಯ ಪ್ರವರ್ತಕರು ಹಾಗೂ ಅವರ ಸಮಾಲೋಚಕರು	ಅನುಬಂಧ-2		
ಭಾಗವಹಿಸಿದಂತಹ ಸಾರ್ವಜನಿಕರ ಪಟ್ಟಿ	ಅನುಬಂಧ-3		

ಪೀರಿಕೆ:

ಬೆಂಗಳೂರು ನಗರ ಅಭಿವೃದ್ಧಿ ಪ್ರಾಧಿಕಾರವು ತುಮಕೂರು ರಸ್ತೆಯಿಂದ ಬಳ್ಳಾರಿ ರಸ್ತೆ, ಹಳೆ ಮದ್ರಾಸ್ ರಸ್ತೆ ಹಾಯ್ದು ಹೊಸೂರು ರಸ್ತೆ ಸಂಪರ್ಕಿಸುವ ಎಂಟು ಲೇನ್ ಗಳನ್ನು ಹೊಂದಿರುವ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯ (ಹಂತ-1ರ) ನಿರ್ಮಾಣದ ಯೋಜನೆಯನ್ನು ಪ್ರಸ್ತಾಪಿಸಿದ್ದು, ಸದರಿ ಯೋಜನೆಯು ಸಮಾರು 65 ಕಿ.ಮೀ. ರಸ್ತೆಯನ್ನು ನಿರ್ಮಾಣವನ್ನು ಒಳಗೊಂಡಿದ್ದು (ಚೈ, ಕಿ.ಮೀ. 0.00) ತುಮಕೂರು ರಸ್ತೆಯಿಂದ (ಚೈ, ಕಿ.ಮೀ. 64.65) ಹೋಸೂರು ರಸ್ತೆಯವರೆಗೆ (ಬೇಗೂರು ಹತ್ತಿರ), ಬಾಲವಕೆರೆ, ಹೆಸರಘಟ್ಟ, ಯಲಹಂಕ, ಬೆಟ್ಟಲ್ಲಸೂರು, ತಣಿಸಂದ್ರ, ಬಾಗಲೂರು, ಅವಲಹಳ್ಳಿ, ಸದರಮಂಗಳ, ವೈಟ್ ಫೀಲ್ಡ್, ವರ್ತೂರು, ದೊಮ್ಮ ಸಂದ್ರ ಮತ್ತು ಎಲೆಕ್ಟ್ರಾನಿಕ್ ಸಿಟಿಯ ಪ್ರದೇಶದಲ್ಲಿ ಹಾದು ಹೋಗುತ್ತದೆ.

ಬೆಂಗಳೂರು ನಗರ ಅಭಿವೃದ್ದಿ ಪ್ರಾಧಿಕಾರದವರು ಕೇಂದ್ರ ಪರಿಸರ ಮತ್ತು ಅರಣ್ಯ ಸಚಿವಾಲಯ ಹೊರಡಿಸಿರುವ 2006 ನೇ ಇಸವಿಯ ಪರಿಸರ ಆಘಾತ ಅಂದಾಜಿಕರಣ ಅಧಿಸೂಚನೆ ಪ್ರಕಾರ ಪರವಾನೆಗೆಗಾಗಿ ಅರ್ಜಿಯನ್ನು ಸಲ್ಲಿಸಿರುತ್ತಾರೆ. ಅದರಂತೆ ರಾಜ್ಯ ಪರಿಸರ ಆಘಾತ ಅಂದಾಜಿಕರಣ ಪ್ರಾಧಿಕಾರ, ಕರ್ನಾಟಕ ಸರ್ಕಾರ ಇವರು 18 ಡಿಸೆಂಬರ್ 2009 ರಂದು ಉಲ್ಲೇಖದ ನಿಭಂದನೆಗಳನ್ನು ಜಾರಿಗೊಳಿಸಿ ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿಯನ್ನು 2006 ರ ಅಧಿಸೂಚನೆಯ ಪ್ರಕಾರ ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಸಭೆ / ಸಮಾಲೋಚನೆಯನ್ನು ನೆರವೇರಿಸುವಂತೆ ಕೋರಿ ನಡವಳಿಗಳನ್ನು ಸಲ್ಲಿಸುವಂತೆ ಸೂಚಿಸಿರುತ್ತಾರೆ.

ಪರಿಸರ ಆಘಾತ ಅಂದಾಜಿಕರಣ ಅಧಿಸೂಚನೆಯ ಪ್ರಕಾರ ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿಯವರು ಸದರಿ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಆರಂಭಿಸಿ ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಸಭೆ / ಸಮಾಲೋಚನೆಯನ್ನು ಆಯೋಜಿಸಿರುತ್ತಾರೆ. ಇದರನ್ವಯ ಮಂಡಳಿಯವರು ಮುಂಚೂಣಿಯಲ್ಲಿರುವ '' ವಿಜಯ ಕರ್ನಾಟಕ'', ''ಡೆಕ್ಕನ್ ಹೆರಾಲ್ಡ್'' ಮುಂತಾದ ಕನ್ನಡ ಮತ್ತು ಆಂಗ್ಲ ಪತ್ರಿಕೆಗಳಲ್ಲಿ ದಿನಾಂಕ 06.01.2014 ರಂದು ಕನ್ನಡ ಮತ್ತು ಆಂಗ್ಲ ಪತ್ರಿಕೆಗಳಲ್ಲಿ ಪ್ರಕಟಣೆಯನ್ನು ನೀಡಿರುತ್ತಾರೆ. ಕನ್ನಡ ಮತ್ತು ಆಂಗ್ಲ ಭಾಷಾ ಅವತರಣಿಕೆಯಲ್ಲಿ ಸಿದ್ದ ಪಡಿಸಿದ ಕರಡು ಪರಿಸರ ಆಘಾತ ವರದಿಯನ್ನು ಸೀಗೆಹಳ್ಳಿ, ಕಾಡುಗೋಡಿ, ಚಿಕ್ಕಜಾಲ, ಹೆಸರಘಟ್ಟ, ಬಿದರಹಳ್ಳಿ, ಆವಲಹಳ್ಳಿ, ಕಣ್ಣೂರು ಮತ್ತು ದೊಡ್ಡಬನಹಳ್ಳಿ ಮುಂತಾದ ಗ್ರಾಮ ಪಂಚಾಯಿತಿಯ ಕಛೇರಿಗಳಲ್ಲಿ ಸಾರ್ವಜನಿಕರು ಹಾಗೂ ಆಸಕ್ತರ ಅವಗಾಹನೆಗಾಗಿ ಇಡಲಾಗಿತ್ತು.

2006 ನೇ ಇಸವಿಯ ಪರಿಸರ ಆಘಾತ ಅಂದಾಜಿಕರಣ ಅಧಿಸೂಚನೆಯ ಪ್ರಕಾರ, ದಿನಾಂಕ 06.02.2014 ರಂದು 11.00 ಗಂಟೆಗೆ ಬಿಳಿಶಿವಾಲೆ, ಬಿದರಹಳ್ಳಿ ಹೋಬಳಿ, ಬೆಂಗಳೂರು ಇಲ್ಲಿ ಡಾ.ಜಿ.ಸಿ.ಪ್ರಕಾಶ್, ಭಾ.ಆ.ಸೇ., ಜಿಲ್ಲಾಧಿಕಾರಿ ಬೆಂಗಳೂರು ನಗರ ಜಿಲ್ಲೆ, ಇವರ ಅಧ್ಯಕ್ಷತೆಯಲ್ಲಿ ಸಾರ್ವಜನಿಕ ಸಭೆಯನ್ನು ನಡೆಸಲಾಯಿತು. ಶ್ರೀ. ಎಮ್ .ಕೆ. ಪ್ರಭುದೇವ್, ಹಿರಿಯ ಪರಿಸರ ಅಧಿಕಾರಿ, ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿ, ಬೆಂಗಳೂರು ಪೂರ್ವ, ಬೆಂಗಳೂರು ಇವರು ಜಿಲ್ಲಾಧಿಕಾರಿಯವರನ್ನು ಮತ್ತು ನೆರೆದಿದ್ದವರನ್ನು ಸ್ವಾಗತಿಸುತ್ತಾ ಸಭೆಯನ್ನು ಆರಂಭಿಸಿದರು. ಇವರು ಆಘಾತ ಅಂದಾಜೀಕರಣದ ಅಧಿಸೂಚನೆಯನ್ನು ಕ್ಲುಪ್ತವಾಗಿ ವಿವರಿಸುತ್ತಾ ಸಭಿಕರಲ್ಲಿ ತಮ್ಮ ಸಲಹ, ಸೂಚನೆ ಅಭಿಪ್ರಾಯ ಇತ್ಯಾಧಿಗಳನ್ನು ಸೂಚಿಸುವಂತೆ ಕೋರಿದರು. ಶ್ರೀ. ಷಣ್ಮುಖಪ್ಪ , ಪರಿಸರ ಅಧಿಕಾರಿ, ಶ್ರೀ. ಕೆ.ಎಮ್.ರಮೇಶ್, ಉಪ ಪರಿಸರ ಆಧಿಕಾರಿ, ಡಾ.ಹೆಜ್.ಆರ್.ಮಟ್ಟರಾಜು, ಸಹಾಯಕ ಪರಿಸರ ಅಧಿಕಾರಿ ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿ, ಬೆಂಗಳೂರು ಮಹದೇವಪುರ, ಇವರುಗಳು ಸಭೆಯನ್ನು ನಡೆಸಲು ಸಹಾಯ ಮಾಡಿದರು. ಸಭೆಗೆ ಮೊದಲು ಮತ್ತು ಸಭೆಯು ನಡೆಯುವ ಸಮಯದಲ್ಲಿ 12 ಪತ್ರಗಳು ಸ್ವೀಕೃತಗೊಂಡಿದ್ದು ಅವುಗಳ ವಿವರ ಈ ಕೆಳಕಂಡಂತಿದೆ.

ಕ್ರಮ ಸಂಖ್ಯೆ.	ಹೆಸರು ಮತ್ತು ವಿಳಾಸ	ಕೆ.ರಾ.ಮಾ.ನಿ.ಮಂ, ಕೇಂದ್ರ ಕಛೇರಿಯಲ್ಲಿ ಸ್ವೀಕರಿಸಿದ ದಿನಾಂಕ	ಕೆ.ರಾ.ಮಾ.ನಿ.ಮಂ, ಪ್ರಾದೇಶಿಕ ಕಛೇರಿ ಮಹದೇವಮರದಲ್ಲಿ ಸ್ವೀಕರಿಸಿದ ದಿನಾಂಕ	ವಿಷಯ
1	ಶ್ರೀಮತಿ, ರೀನಾ ಮಹೆಂದ್ರ, ಆವಲಹಳ್ಳಿ ಎಸ್ಟೇಟ್ ಯಲಹಂಕ ಪೋಸ್ಟ್, ಬೆಂಗಳೂರು-560064	09-01-2014	24-01-2014	ಸಾರ್ವಜನಿಕ ಸಭೆಯನ್ನು ನಾಲ್ಕು ವಲಯಗಳಲ್ಲಿ ಪ್ರತ್ಯೇಕ ದಿನಗಳಲ್ಲಿ ನಾಲ್ಕು ಕಡೆ ಸಭೆ ನಡೆಸಲು ಮನವಿ.
2	ಪಿಆರ್ಆರ್-1, ತೊಂದರೆಒಳಗಾದ ನಿವಾಸಿಗಳ ಹಿತರಕ್ಷಣಾ ಸಮಿತಿ, ನಂ. 108, ನಾಗಾನಂದ ನಿಲಯ, ವಿಶ್ವ ಪ್ರಕೃತಿ ಲೇಔಟ್, ಮಾರುತಿನಗರ, ೨ನೇ ಹಂತ, ಯಲಹಂಕ, ಬೆಂಗಳೂರು-560064	15-01-2014	24-01-2014	ಪರಿಸರ ಆಘಾತ ಅಧ್ಯಯನ ವರದಿಯಲ್ಲಿ ಎಷ್ಟು ಮರಗಳು ಹಾಳಗುತ್ತವೆ ಎಂಬುದರ ಬಗ್ಗೆ ಮಾಹಿತಿ ಇರುವುದಿಲ್ಲ ಹಾಗೂ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ಪರಿಸರದ ಹಾನಿಯಾಗುತ್ತದೆ ಹಾಗೂ ಹಲವಾರು ಕೆರೆಗಳು, ಅರಣ್ಯ ಪ್ರಧೇಶಗಳು, ದೇವಸ್ಥಾನಗಳು, ಚರ್ಚಗಳು, ಸ್ಮಶಾನಗಳು, ಮುಖ್ಯ ರಸ್ತೆಯಲ್ಲಿ ಸಿಲುಕಿರುತ್ತವೆ. ೭೫ ಮೀಟರ್ ರಸ್ತೆಯ ಅಗಲದ ಮಾರ್ಗಕ್ಕೆ ಡಿ.ಪಿ.ಆರ್ ಮತ್ತು ಫಿಸಿಬಲಿಟಿ ರಿಪೋರ್ಟನ್ನು ಕ್ರೂಡಿಕರಿಸಿರುವುದಿಲ್ಲ.
3	ಶ್ರೀ. ಮಹೇಂದ್ರ ಆರ್. ಆವಲಹಳ್ಳಿ ಎಸ್ಟೇಟ್ ಯಲಹಂಕ ಮೋಸ್ಟ್, ಬೆಂಗಳೂರು-560064	27-01-2014	04-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ರಿಂಗ್ ರಸ್ತೆ ಡಿ.ಪಿ.ಆರ್ ಮಾಡಿರುವುದಿಲ್ಲ ಮತ್ತು ಪರಿಸರ ಅಘಾತ ಅನ್ವಯ ಅಧಿಸೂಚನೆ ಉಲ್ಲಂಘನೆಯಾಗುತ್ತಿರುವ ಬಗ್ಗೆ.
4	ಶ್ರೀ. ಸಿ. ಕಾಮನಿ ನಂ.35, ಕಿಂಗ್ ಸ್ಟ್ ನ್ ಟವರ್ಸ್, 6&7, ಕಿಂಗ್ಸ್ಟನ್ ರಸ್ತೆ, ಅಲಸೂರ್ ಕೆರೆ, ಬೆಂಗಳೂರು-560042	27-01-2014	04-02-2014	ಪರಿಸರ ಆಘಾತ ಅಧ್ಯಯನ ವರದಿಯನ್ನು ಮಾಡಿರುವ ರ್ಯಾಮ್ಕಿ ಸಂಸ್ಥೆ, ಇವರು ನಡೆಸುತ್ತಿರುವ ಘನ ತ್ಯಾಜ್ಯ ವಸ್ತುಗಳ ವಿಲೇವಾರಿಯನ್ನು ಮಾವಳ್ಳಿಮರ ಬೆಂಗಳೂರು ಇಲ್ಲಿ ನಡೆಸುತ್ತಿದ್ದು ಇದರ ವಿರುದ್ದ ಈಗಾಗಲೇ ಅವರ ಮೇಲೆ ಘನ ತ್ಯಾಜ್ಯ ವಸ್ತುಗಳನ್ನು ವಿಲೇವಾರಿ ಮಾಡದಿದ್ದರಿಂದ ಮಾನ್ಯ ಉಚ್ಚ ನ್ಯಾಯಾದಲ್ಲಿ ಕೇಸು ನಡೆಯುತ್ತಿದ್ದು ಪರಿಸರ ಆಘಾತ ವರದಿಯನ್ನು ನಂಬುದಕ್ಕೆ ಅರ್ಹರಿರುವುದಿಲ್ಲ.
5	ಗ್ರಾಮಸ್ಥರು , ವೆಂಕಟಾಲ, ಕೊಟಿಗೇನ ಹಳ್ಳಿ, ಕೋಗಿಲು ಗ್ರಾಸ್ಥರು, ಬೆಂಗಳೂರು	27-01-2014	04-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ವಾಹನಗಳು ಅತಿವೇಗವಾಗಿ ಚಲಿಸುತ್ತವೆ, ಅದರಿಂದ ದೋಳಿನ ಅಂಶಗಳು ಉತ್ಪತ್ತಿಯಾಗುತ್ತದೆ ಮತ್ತು ಗದ್ದಲದ ವತಾವರಣವು ಕಲುಶಿತವಾಗಿ ಹಾನಿಯಾಗಿ ಬಡಾವಣೆಗಳಲ್ಲಿ ವಾಸಿಸುವ ಸಾರ್ವಜಿನಿಕರಿಗೆ ತೊಂದರೆಯಾಗುತ್ತದೆ.

ಸದರಿ ಪತ್ರಗಳ ಘೋಟೋ ನಕಲನ್ನು ಅನುಭಂದ -4 ರಲ್ಲಿ ಲಗತ್ರಿಸಿಲಾಗಿದೆ.

6	ಹೆಸರು ಮತ್ತು ವಿಳಾಸ ಇಲ್ಲದ ಅರ್ಜಿ ಬೆಂಗಳೂರು	14-01-2014	04-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ಪರಿಸರ ಮಾಲಿನ್ಯದ ಬಗ್ಗೆ ಹಾಗೂ ಕೇಸುಗಳು ನಡೆಯುತ್ತಿರುವ ಬಗ್ಗೆ.
7	ಎ. ಬಾರ್ಟೆಯೆ, ಬಾರತಿ ಫಾರಂ, ರಾಮಗೊಂಡನಹಳ್ಳಿ, ಯಲಹಂಕ ಹೋಬಳಿ, ಬೆಂಗಳೂರು.	27-01-2014	05-02-2014	1 ಕಿ.ಮೀ. ಗೆ ಬೇಕಾಗುವ ನೀರಿನ ಬಳಕೆಯ ಬಗ್ಗೆ ಹಾಗೂ ಯಾವ ಮೂಲದಿಂದ ನೀರನ್ನು ಬಳಸುತ್ತಾರೆ.
8	ಸುದಾಕರ್ ಹೆಗ್ಗಡೆ, ನಂ. 948, 6ನೇ ಕಾಸ್, ಆಶಾ ಟೌನ್ ಶಿಫ್, - ದೊಡ್ಡಗುಬ್ಬಿ ಪೋಸ್ಟ್, ಬೆಂಗಳೂರು.	01-02-2014	05-02-2014	ಪೆಟ್ರೋನೆಟ್ ಎಮ್ ಬಿ ಹೆಚ್ ಲಿ., ನವರು ಪೆಟ್ರೋಲಿಯಂ ಪೈಪ್ ಲೈನ್ನು ಬಿಳಿಶಿವಾಲೆ, ರಾಂಪುರ ಅಡೂರು ಮುಂತಾದ ಸ್ಥಳಗಳಲ್ಲಿ ಹಾದು ಹೋಗಿದ್ದು ಈ ಪ್ರೋಚೆಕ್ಟ್ ನಿಂದ ಪೆಟ್ರೋಲಿಯಂ ಪೈಪ್ ಹೊಡೆದು ಡಿಸ್ ಆಸ್ಟರ್ ಸಾದ್ಯತೆ ಹೆಚ್ಚುರುತ್ತದೆಂದು ಮನವಿ ಸಲ್ಲಿಸಿರುತ್ತಾರೆ.
9	ಸಿದ್ದಪ್ಪ , ಬಿಳಿಶಿವಾಲೆ, 1ನೇ ಮಹಡಿ, ಕುರುಬರ ಸಂಘ, 2ನೇ ಮುಖ್ಯ ರಸ್ತೆ, ಗಾಂದಿನಗರ ಬೆಂಗಳೂರು.	03-02-2014	05-02-2014	ಸದರಿ ಪ್ರೋಜೆಕ್ಟ್ ನಿಂದ ತಪ್ಪಗೊಂಡನಹಳ್ಳಿ ಜಲಾಶಯದ ಹಾಗೂ ಸದರಿ ಸ್ಥಳಗಳಲ್ಲಿರುವ ಕೆರೆಗಳ ಮೇಲೆ ದುಷ್ಪರಿಣಾಮ ಬೀರುತ್ತದೆ ಹಾಗೂ ಮರಗಳನ್ನು ಕಡಿಯುವುದರಿಂದ ಪರಿಸರದಲ್ಲಿ ಬದಲಾಗುವ ಸಾದ್ಯತೆ ಇರುತ್ತದೆ.
10	ಡಿ.ಎಂ. ದ್ವಾರಕಯ್ಯ, ನಂ.222, 1ನೇ ಮಹಡಿ, 4ನೇ ಕ್ರಾಸ್, (ಸಿ.ಎಂ.ಆರ್) ಕಲ್ಯಾಣನಗರ, ಬೆಂಗಳೂರು-560043.	ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಆಲಿಕೆ ಸಭೆಯಲ್ಲಿ ನೀಡಿರುವುದು	06-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ಪರಿಸರ ಮಾಲಿನ್ಯದ ಬಗ್ಗೆ ಹಾಗೂ ಕೇಸುಗಳು ನಡೆಯುತ್ತಿರುವ ಬಗ್ಗೆ.
11	ವಿ. ಸುರೇಶ್, ಸ/ಆಪ್ ಲೇಟ್ ಶ್ರೀ ವೆಂಕಟಸ್ವಾಮಿ ರೆಡ್ಡಿ ಮತ್ತು ಇತರರು, ಸೋರಹುಣಸೆ ವಿಲೇಜ್, ವರ್ತೂರು ಪೋಸ್ಟ್, ಬೆಂಗಳೂರು-87.	ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಆಲಿಕೆ ಸಭೆಯಲ್ಲಿ ನೀಡಿರುವುದು	06-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ಪರಿಸರ ಮಾಲಿನ್ಯದ ಬಗ್ಗೆ ಹಾಗೂ ಕೇಸುಗಳು ನಡೆಯುತ್ತಿರುವ ಬಗ್ಗೆ.
12	ಚೆರಿಯನ್ ಸಬಾಸಟೈನ್, ನೆಲಮಹಡಿ, ನಂ. 74, 1ನೇ ಅಡ್ಡ ರಸ್ತೆ, ತ್ಯಾಗರಾಜ ಲೇಔಟ್, ಜೈ ಭಾರತ್ ನಗರ, ಬಾನಸವಾಡಿ ರೋಡ್, ಬೆಂಗಳೂರು-560033.	ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಆಲಿಕೆ ಸಭೆಯಲ್ಲಿ ನೀಡಿರುವುದು	06-02-2014	ಉದ್ದೇಶಿತ ಫರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯನ್ನು 10 ರಿಂದ 15 ಕಿ.ಮೀ. ದೂರಕ್ಕೆ ಸ್ಥಳಾಂತರಿಸುವ ಬಗ್ಗೆ .

ಮುಂದುವರಿದು ಬೆಂಗಳೂರು ನಗರ ಅಭಿವೃದ್ಧಿ ಪ್ರಾಧಿಕಾರದ ಪರವಾಗಿ ಅದರ ಸಮಾಲೋಚಕ ಸಂಸ್ಥೆಯಾದ ಮೆ ರಾಮ್ಕಿ ಎನ್ವರ್ದೋ ಇಂಜಿನಿಯರ್ಸ್ಸ್ ಲಿ., ಬೆಂಗಳೂರು ಇದರ ಪ್ರತಿನಿಧಿಯಾದ ಶ್ರೀ. ಹೇಮಂತ್ ರಾಜ್ ಕುಮಾರ್ರವರು ಈ ರಸ್ತೆ ಯೋಜನೆಯ ರೂಪುರೇಶೆ, ವಿವರಗಳು ಮುಂತಾದವಿಗಳನ್ನು Power point presentation ನ ಮೂಲಕ ಪ್ರಸ್ತುತ ಪಡಿಸಿದರು. ಪ್ರಸ್ತುತ ಪಡಿಸಿದ ಯೋಜನೆಯ ಪ್ರಮುಖ ಅಂಶಗಳು ಈ ಕೆಳಕಂಡಂತಿದೆ.

- o ರಸ್ತೆಯ ಉದ್ದ 56 ಕಿ.ಮೀ. (ಹಂತ-1).
- ಂ ಯೋಜನೆಯ ಅಂದಾಜು ವೆಚ್ಚ 930 ಕೋಟಿ.
- o 8 ಲೇನ್ ಗಳ ನಿರ್ಮಾಣ, ಪ್ರತಿಯೊಂದು ಲೇನಿನ ಅಗಲ 3.5 ಮೀಟರ್.
- o ತುಮಕೂರು ಮತ್ತು ಹೊಸೂರು ರಸ್ತೆಯ ಜೊಡಣೆ ಹಳೆಯ ಮದ್ರಾಸು ರಸ್ತೆಯ ಮೂಲಕ.
- o ಹೆಸರಫಟ್ಟ, ದೊಡ್ಡಬಳ್ಳಾಮ, ಬಳ್ಳಾರಿ, ಹೆಣ್ಣೂರು ಮುಖ್ಯ ರಸ್ತೆಗಳ ಪರಿಛೇಧನೆ.
- 0 3.5 ಎಮ್ ಎಲ್ ಡಿ ನೀರಿನ ಬಳಕೆ.
- ಅಗತ್ಯ ಜಲ ಮತ್ತು ವಾಯು ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಸಾದನಗಳ ಬಳಕೆ.

ಯೋಜನೆಯನ್ನು ಪ್ರಸ್ತುತ ಪಡಿಸಿದ ಬಳಿಕ ಜಿಲ್ಲಾಧಿಕಾರಿಗಳು ಸಭಿಕರನ್ನು ಅವರ ಅಹವಾಲು, ಸಲಹೆ, ಸೂಚನೆ ಮುಂತಾದವುಗಳನ್ನು ಪರಿಸರಕ್ಕೆ ಸಂಬಂದಿಸಿದಂತೆ ತಿಳಿಸಿದರು. ಸಭೆಯಲ್ಲಿ ವ್ಯಕ್ತವಾದಂತಹ ಅಭಿಪ್ರಾಯ ಅಹವಾಲು ಇವುಗಳನ್ನು ಈ ಕೆಳಗಿನಂತೆ ಕ್ರೂಡೀಕರಿಸಿದೆ.

ಮುಂದುವರೆದು, ಸಭೆಯಲ್ಲಿ ಹಾಜರಿದ್ದ ಈ ಕೆಳಕಂಡವರು ಸಲಹೆ ಹಾಗೂ ಅಹವಾಲುಗಳನ್ನು ಈ ಕೆಳಕಂಡಂತೆ ವ್ಯಕ್ತಪಡಿಸಿದರು.

1. ಶ್ರೀ. ಸತ್ಯ ಬಾಬು, ಹರೂಹಳ್ಳಿ ಗ್ರಾಮ, ಯಲಹಂಕ ಹೋಬಳಿ :

ಸದರಿಯವರು ಸ್ವಾಧೀನ ಪಡಿಸಿಕೊಂಡ ಜಮೀನುಗಳ ಹಾಗೂ ಕಟ್ಟಡಗಳ ಮಾಲೀಕರಿಗೆ ಯಾವ ರೀತಿಯ ಪರಿಹಾರ ಧನವನ್ನು ನೀಡಲಾಗುತಿದೆ ಎನ್ನುವುದರ ಬಗ್ಗೆ ಸರಿಯಾದ ಮಾಹಿತಿ ಇರುವುದಿಲ್ಲವೆಂದರು. ಈ ಯೋಜನೆಯು 2005 ರಲ್ಲಿ ಪ್ರಾರಂಭವಾಗಿದ್ದು ನಂತರದ ದಿನಗಳಲ್ಲಿ ಯಾವ ರೀತಿಯಿಂದಲೂ ಚರ್ಚೆ, ಸಭೆ ಹಾಗೂ ಪತ್ರಿಕೆಗಳಲ್ಲಿ ಜನರಿಗೆ ತಿಳುವಳಿಕೆಗಳನ್ನು ಪ್ರಾಧಿಕಾರವು ನೀಡಿರುವುದಿಲ್ಲವೆಂದರು. ಈ ಯೋಜನೆಯಲ್ಲಿ ಪೂರ್ಣಗೊಳಿಸಲು ಇನ್ನೂ ಎಷ್ಟು ವರ್ಷಗಳ ಕಾಲ ಬೇಕಾಗುವುದೆಂದು ಬಿ.ಡಿ.ಎ ಅವರನ್ನು ಪ್ರಶ್ನಿಸಿದರು. ರಸ್ತೆಯನ್ನು ಮಾಡುವುವುದರಿಂದ ಈ ಪ್ರಾಂತ್ಯದಲ್ಲಿ ವಾಹನ ದಟ್ಟಣೆ ಹೆಚ್ಚಾಗಿ ಮಾಲಿನ್ಯದ ಮಟ್ಟವು ಕೂಡ ಹೆಚ್ಚಾಗುವ ಸಾಧ್ಯತೆ ಇರುವುದರಿಂದ ಸದರಿ ರಸ್ತೆಯ ಜೋಡಣೆಯನ್ನು ಬದಲಾಯಿಸಬೇಕೆಂದು ಕೋರಿದರು.

2. ಶ್ರೀ. ಪವನ್, ಬಿಳಿಶಿವಾಲೆ :

ಬಿ.ಡಿ.ಎ ದವರು ರಸ್ತೆಯ ಜೊಡಣೆಯನ್ನು ಬದಲಾಯಿಸಿರುವುದರಿಂದ ಪರಿಹಾರ ಧನವನ್ನು ಯಾವ ಜೊಡಣೆಗೆ ನೀಡುತ್ತೀರಾ ಎಂಬುದರ ಬಗ್ಗೆ ಸ್ಪಷ್ಟಪಡಿಸುವಂತೆ ಕೋರಿದರು. ಮುಂದುವರೆದು ರಸ್ತೆಯ ಜೊಡಣೆಯು ಪದೇ ಪದೇ ಬದಲಾವಣೆಯಾಗಿರುವುದರಿಂದ ತಮ್ಮಗಳ ಜಮೀನುಗಳು ಬೇರೆ ಯಾವುದೇ ಚಟುವಟಿಕೆಗೆ ಭೂ ಪರಿವರ್ತನೆಯಾಗುತ್ತಿಲ್ಲವೆಂದು ವ್ಯಕ್ತಪಡಿಸಿದರು.

3. ವಿ. ಸುರೇಶ್, ಸೋರಹುಣಸೆ ಗ್ರಾಮ:

ಇವರು ಸುಮಾರು 200 ಮರಗಳನ್ನು ಕತ್ತರಿಸಲಾಗುವುದೆಂದು ತಿಳಿಸಲಾಗಿದೆ, ಆದರೆ ನನ್ನ ತೋಟದಲ್ಲೇ ಸಮಾರು 30 ಸಪೋಟ ಗಿಡಗಳು ಹಾಗೂ 60 ತೆಂಗಿನ ಮರಗಳು ಇದ್ದು ಯಾವ ಆದಾರದ ಮೇಲೆ ಮರಗಳನ್ನು ಕಡಿಯಲು ಅಂದಾಜನ್ನು ಮಾಡಲಾಗಿದೆ ಎಂದರು. ಮುಂದುವರೆದಂತೆ ತಮ್ಮ ಜೀವನವು ತೋಟಗಾರಿಕೆ ಹಾಗೂ ರೇಷ್ಮೆಗಾರಿಕೆಯಿಂದ ನಡೆಯುತ್ತಿದ್ದು ರಸ್ತೆ ನಿರ್ಮಾಣದಿಂದ ಅದಕ್ಕೆ ಕುತ್ತು ಬಂದಿರುವುದಾಗಿ ತಿಳಿಸಿ ಸದರಿ ಯೋಜನೆಯಿಂದ ವಾಯು ಮತ್ತು ಶಬ್ದಮಾಲಿನ್ಯದಿಂದ ಹೆಚ್ಚಾಗುವುದೆಂದು ಸಹ ಹೇಳಿದರು. ರಸ್ತೆಯ ಯೋಜನೆಯು ಹೊಸ ಉದ್ಯೋಗವಕಾಶ ಸೃಷ್ಟಿಸದೇ ಇರದ ಕಾರಣ ಇಂತಹ ಯೋಜನೆಯನ್ನು ಕೈಬಿಡಬೇಕೆಂದು ಕೋರಿದರು.

4. ಶ್ರೀ.ಶ್ಯಾಮ, ಬಿಳಿಶಿವಾಲೆ:

ಹೆಣ್ಣೂರಿನಿಂದ ರಸ್ತೆ ಜೊಡಣೆಯ ಬಗ್ಗೆ ಹಾಗೂ ಸದರಿ ಜೊಡಣೆಯು ಯಾವ ಯಾವ ಸರ್ವೆ ನಂಬರುಗಳ ಮೇಲೆ ಪರಿಣಾಮ ಬೀಳುವುದು ಎಂಬುದನ್ನು ವಿವರವಾಗಿ ತಿಳಿಸಿಕೊಡುವಂತೆ ಕೋರಿಕೊಂಡರು. ರಸ್ತೆಯ ಅಲೈನ್ ಮೆಂಟ್ ಅನ್ನು ಹೇಗೆ ಮತ್ತು ಯಾವ ರೀತಿ ಮಾಡಲಾಗಿದೆ ಎಂದು ಕೇಳಿರುತ್ತಾರೆ.

5. ಶ್ರೀ.ಮಹೇಶ್, ಬಿಳಿಶಿವಾಲೆ:

ಸದರಿಯವರು ರಸ್ತೆ ನಿರ್ಮಾಣ ಉದ್ದೇಶವು ಒಳ್ಳೆಯದಾಗಿದ್ದು ತಮ್ಮ ಹಳ್ಳಿಗೆ ಯಾವುದೇ ರೀತಿಯ ತೊಂದರೆ ಇರುವುದಿಲ್ಲ, ರಸ್ತೆ ನಿರ್ಮಾಣದಿಂದ ಆರ್ಥಿಕ ಅಭಿವೃದ್ಧಿಯಾಗುತ್ತದೆ ಮತ್ತು ದೊರೆಯುವ ಪರಿಹಾರ ಧನದಿಂದ ಅನೇಕರ ತೊಂದರೆಗಳು ಬಗೆಹರಿಯುತ್ತವೆ. ಬೆಂಗಳೂರು ನಗರದ ಅಭಿವೃದ್ಧಿಗೆ ರಸ್ತೆಯ ನಿರ್ಮಾಣವು ಅತ್ಯಗತ್ಯವಾದುದರಿಂದ ಈ ಯೋಜನೆಯನ್ನು ಕೈಬಿಡಬೇಡಿ ಎಂದು ಸೂಚಿಸುತ್ತಾ ಎಲ್ಲರೂ ಇಂತಹ ಯೋಜನೆಯನ್ನು ಬೆಂಬಲಿಸಬೇಕೆಂದು ಕೋರುತ್ತಾ ಸೂಕ್ತ ರೀತಿಯ ಪರಿಹಾರ ಧನವನ್ನು ನೀಡಬೇಕೆಂದು ಕೋರಿದರು.

6. ಶ್ರೀ.ರಾಜನ್, ವೆಂಕಟಾಲ, ಯಲಹಂಕ:

ಇವರು ಪರಿಸರ ಆಘಾತ ವರದಿಯನ್ನು 2010 ರಲ್ಲಿ ತಯಾರಿಸಿದ್ದು (ಮೂರು ಮತ್ತು ನಾಲ್ಕು ವರ್ಷಗಳ ಹಿಂದೆ) ಈ ಪ್ರಸ್ತುತ ಇದು ವಿಶ್ವಾಸರ್ಹವೇ ಎಂದು ಕೇಳಿದರು. ರಸ್ತೆಯ ನಿರ್ಮಾಣಕ್ಕಾಗಿ ಜಮೀನು ಕಳೆದುಕೊಂಡವರಿಗೆ ಮೆನಯನ್ನು ಕಟ್ಟುಲು ಜಮೀನಿನ ಮರುಹಂಚಿಕೆಯ ಬಗ್ಗೆ ವಿವರಕೊಡುವಂತೆ ಕೋರಿದರು. ರಸ್ತೆಯ ಜೋಡಣೆಯು ಮೂರು ನಾಲ್ಕು ಬಾರಿ ಸಮಾಜದ ಕೆಲವರ್ಗದ ಹಾಗೂ ಶ್ರೀಮಂತರ ಅನುಕೂಲಕ್ಕಾಗಿ ಬದಲಾವಣೆಗೊಳಿಸಿದ್ದಾರೆಂದು ಕಳವಳ ವ್ಯಕ್ತ ಪಡಿಸಿದರು ಬಿ.ಡಿ.ಎ ತಯಾರಿಸಿರುವ ರಸ್ತೆಯ ನೀಲ ನಕ್ಷೆಯು ಸರಿಇಲ್ಲವೆಂದು ದೋರುತ್ತಾ ಬಿ.ಡಿ.ಎ ವತಿಯಿಂದ ಸೂಕ್ತ ಸಮಂಜಸಕರ

ಮಾರುತ್ತರವು ದೊರೆಯುತ್ತಿಲ್ಲ, ಹಾಗಾಗಿ ಈ ಸಂಪೂರ್ಣ ಯೋಜನೆಯು ಕ್ರಮಬದ್ದವಾಗಿಲ್ಲವೆಂದು ನುಡಿದರು. ಹಾಗಾಗಿ ಈ ಯೋಜನೆಯನ್ನು ಸದರಿ ಸ್ಥಳದಲ್ಲಿ ಕೈಬಿಟ್ಟು ಬೇರೆ ಕಡೆ ಬೃಹತ್ ಬೆಂಗಳೂರು ಮಹಾ ನಗರ ಪಾಲಿಕೆಯ ಎಲ್ಲೆಯಿಂದ ಹೊರಗೆ ಕೈಗೆತ್ತಿಕೊಳ್ಳುವಂತೆ ಕೋರಿದರು. ಹಲವು ಭೂ ಮಾಲಿಕರು ಕೋರ್ಟಿನಲ್ಲಿ ಹೂಡಿರುವ ದಾವೆಗಳು ಇತ್ಯರ್ಥವಾಗುವವರೆಗೂ ಯೋಜನೆಯನ್ನು ಕೈಗೆತ್ತಿಕೊಳ್ಳದಂತೆ ತಿಳಿಸಿದರು.

7. ಶ್ರೀ. ಅಶೋಕ್, ಬಿಳಿಶಿವಾಲೆ:

ಹಾಲಿ ಇರುವ ವರ್ತುಲ ರಸ್ತೆ ಹಾಗೂ ಈಗಿನ ಪ್ರಸ್ಥಾವಿತ ರಸ್ತೆಯ ನಡುವಿನ ಅಂತರವು ಕೇವಲ 6 ಕಿ.ಮಿ. ಇರುವುದರಿಂದ ಸದರಿ ಯೋಜನೆಯನ್ನು ಕೈಬಿಡುವಂತೆ ಕೋರಿದರು. ಹಾಲಿ ಮತ್ತು ಪ್ರಸ್ಥಾವಿತ ರಸ್ತೆಯ ನಡುವಿನ ಅಂತರವನ್ನು 10-15 ಕಿ.ಮೀ. ಇರುವಂತೆ ಕಾಪಾಡಿಕೊಳ್ಳುತ್ತಾ ಜೋಡಣೆಯನ್ನು ಮಾಡಬೇಕೆಂದು ಸಲಹೆ ನೀಡಿದರು.

8. ಶ್ರೀ. ಆನಂದಕುಮಾರ್, ಬಿಳಿಶಿವಾಲೆ:

ಈ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯ ಯೋಜನೆಯು ಸುಮಾರು ವರ್ಷಗಳಿಂದ ಚರ್ಚೆಯಲ್ಲಿದ್ದು ಆದಷ್ಟು ಬೇಗನೆ ಸಮಯ ಬದ್ಧವಾಗಿ ಕೈಗತ್ತಿಕೊಳ್ಳಬೇಕಾಗಿ ವಿನಂತಿಸಿದರು.

9. ಶ್ರೀ.ರಾಮ ಸ್ವಾಮಿ, ಕ್ಯಾಲ್ಸನಹಳ್ಳಿ:

ರಸ್ತೆ ಜೋಡಣೆಯ ಶುರುವಿನಿಂದ ಮುಕ್ತಾಯದವರೆಗೆ ಒಳಗೊಳ್ಳುವ ಗ್ರಾಮಗಳು ಮತ್ತು ಸರ್ವೆ ನಂ.ಗಳ ಮಾಹಿತಿಯನ್ನು ತಿಳಿಸಿಕೊಡಬೇಕಾಗಿ ಕೋರಿದರು.

10. ಶ್ರೀ. ಚರಿಯನ್, ಕಾಕ್ಸ್ ಟಾನ್, ಬೆಂಗಳೂರು:

ಇವರು ಈ ಫೆರಿಫರಲ್ ರಸ್ತೆಯ ಮಾದರಿಯನ್ನು 1995 ನೇ ಇಸವಿಯ ಸಮಗ್ರ ಅಭಿವೃದ್ದಿ ಯೋಜನೆ (ಸಿ.ಡಿ.ಪಿ) ಯಲ್ಲಿ ಅನುಮೊದಿಸಿದ್ದು, 2004 ನೇ ಇಸವಿಯಲ್ಲಿ ಬಿ.ಡಿ.ಎ ರವರು ಈ ಯೋಜನೆಯನ್ನು ಕೈಬಿಟ್ಟಿದ್ದು ಇದಕ್ಕೆ ಕಾರಣ ತೀರ್ವಗತಿಯಲ್ಲಿ ನಗರ ಬೆಳೆಯುತ್ತಿರುವುದರಿಂದ ಎಂದು ತಿಳಿಸಿರುತ್ತಾರೆ. ನಂತರ ಸಿ.ಡಿ.ಪಿ, 2007 ರ ಪರಿವೀಕ್ಷಣಾ ವರದಿಯಲ್ಲಿ ಹಾಗೂ ಡ್ರಾಪ್ಟ್ ಫ್ರಿಫೀಜಿಬಲಿಟಿ ವರದಿಯ ಪ್ರಕಾರ ಸದರಿ ರಸ್ತೆಯ ನಿರ್ಮಾಣವು ಹಳೆಯ ವರ್ತುಲ ರಸ್ತೆಯಿಂದ 5 ಕಿ.ಮೀ. ಅಂತರದಲ್ಲಿರುತ್ತದೆ. ಮುಂದುವರೆದು ಬೆಂಗಳೂರು ನಗರ ಜಿಲ್ಲೆಯು ತ್ವರಿತವಾಗಿ ಬೆಳೆಯುತ್ತಿರುವುದರಿಂದ ಹಾಗೂ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ದೃಷ್ಠಿಯಿಂದ ಹಳೆಯ ವರ್ತುಲ ರಸ್ತೆ ಮತ್ತು ಯೋಜನೆ ನಿರ್ಮಾಣದ ರಸ್ತೆಯ ಅಂತರ 10 ರಿಂದ 15 ಕೀ.ಮೀ. ಆಗಿರಬೇಕು ಎಂದು ಸ್ಟೂಪ್ ಕಂನ್ಗಲ್ಟೆಂಟ್ ವರದಿಯನ್ನು ಸಲ್ಲಿಸಿರುತ್ತಾರೆ. ಇದೆಲ್ಲವನ್ನೂ ಪರಿಗಣಿಸಿ ಮುಂದಿನ ಹಲವು ವರ್ಷಗಳ ಬೆಳವಣಿಗೆಯ ದೂರದೃಷ್ಠಿ ಇಟ್ಟುಕೊಂಡು ರಸ್ತೆಯ ಪಥವನ್ನು ಮರು ಜೋಡಣೆ ಮಾಡಬೇಕೆಂದು ತಿಳಿಸಿರುತ್ತಾರೆ.

11. ಶ್ರೀಮತಿ. ರೀನಾ ಮಹೆಂದ್ರ, ಆವಲಹಳ್ಳಿ:

ಇವರು, ಇದು ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಸಭೆಯಾದುದ್ದರಿಂದ ಕೇವಲ ಪರಿಸರದ ಬಗ್ಗೆ ಮಾತ್ರ ಚರ್ಚಿಸಿದರೆ ಒಳ್ಳೆಯದು ಹಾಗೂ ಯಾವುದೇ ರೀತಿಯ ಪರಿಹಾರ ವಿಷಯದ ಬಗ್ಗೆ ಮಾತನಾಡುವುದು ಈ ಸಭೆಯಲ್ಲಿ ಸೂಕ್ತವಲ್ಲವೆಂದು ಸೂಚಿಸಿದರು ಹಾಗೂ ಅಂತಹ ವಿಚಾರಕ್ಕೆ ಬೇರೆಯದೆ ಆದ ಸಭೆಯನ್ನು ರಚಿಸತಕ್ಕದ್ದು ಎಂದು ಬೆಂಗಳೂರು ಅಭಿವೃದ್ಧಿ ಪ್ರಾಧಿಕಾರಕ್ಕೆ ಮನವಿ ಮಾಡಿದರು.

ಪರಿಸರ ಆಘಾತ ಅಧ್ಯಯನ ವರದಿಯು 2010 ನೇ ಇಸವಿಯಲ್ಲಿ ತಯಾರಿಸಿದ್ದು ಈಗಾಗಲೇ 3 ವರ್ಷ ಕಳೆದಿತ್ತದೆ. ಆದುದ್ದರಿಂದ ಈಗಲೂ ಈ ವರದಿಯನ್ನು ಪರಿಗಣಿಸಲು ಸೂಕ್ತವೇ ಎಂದು ಪ್ರಶ್ನಿಸಿದರು. ರಸ್ತೆಯು ತಿಪ್ಪಗೋಂಡನ ಹಳ್ಳಿ ಜಲಾಶಯದ ಅಚ್ಚುಕಟ್ಟು ಪ್ರದೇಶದಲ್ಲಿ ಬರುವುದೇ, ಹಾಲಿ ಇರುವ ಅನಿಲ ಪೈಪ್ ಲೈನ್ ಪಕ್ಕ ಮತ್ತು ಅರಣ್ಯ ಪ್ರದೇಶದಿಂದ ಹಾದುಹೋಗುವುದೇ ಎಂಬುದರ ಬಗ್ಗೆ ಸದರಿ ವರದಿಯಲ್ಲಿ ಮಾಹಿತಿ ನೀಡಿರುವುದಿಲ್ಲವೆಂದು ತಿಳಿಸಿದರು.

12. ಶ್ರೀ. ಪ್ರಭಾಕರ್, ಅಗ್ರಹಾರ, ಯಲಹಂಕ:

ಮೊದಲ ಬಾರಿಗೆ 2006 ನೇ ಇಸವಿಯಲ್ಲಿ ಸರ್ವೆಯನ್ನು ಮಾಡಿದ್ದು ತದನಂತರ 4 ರಿಂದ 5 ಬಾರಿ ಪುನರ್ ಸರ್ವೆಯನ್ನು ಮಾಡಿರುವುದರಿಂದ ಯೋಜಿತ ರಸ್ತೆಯ ಪಥವು ಬದಲಾವಣೆಯಾಗುತ್ತಿದ್ದು, ಈಗ ತಮ್ಮ ಮನೆಯನ್ನು ಕಳೆದುಕೊಳ್ಳುವ ಭೀತಿಯಿದೆ, ಆದುದರಿಂದ ದಯವಿಟ್ಟು ಈ ಯೋಜನೆಯನ್ನು ಇಲ್ಲಿಯೇ ನಿಲ್ಲಸಬೇಕೆಂದು ಕೋರಿದರು.

13. ಶ್ರೀ.ಸುಕುಮಾರ್, ಕೊತ್ತನೂರು, ದೊಡ್ಡ ಗುಬ್ಬಿ:

ಇವರು ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಸಭೆಯನ್ನು ಏರ್ಪಡಿಸುರುವುದಕ್ಕೆ ವಂದಿಸುತ್ತಾ, ಇಂತಹ ಸಭೆಯು ಸಾರ್ವಜನಿಕರ ಕುಂದುಕೊರತೆ, ಅಹವಾಲು ಹಾಗೂ ಸಲಹೆಗಳನ್ನು ನೀಡಲು ಹಾಗೂ ಸೂಚಿಸಲು ಒಂದು ಉತ್ತಮ ವೇದಿಕೆಯಾಗಿದೆ ಎಂದು ನುಡಿದರು. ಯೋಜನೆಯು ಅನಗತ್ಯವಾಗಿ ವಿಳಂಬವಾಗಿದ್ದು ಇದರ ಬಗ್ಗೆ ಆಸಕ್ತರಿಗೆ ಹಾಗೂ ಬಾದಿತರಿಗೆ ಯಾವುದೇ ರೀತಿಯ ಮಾಹಿತಿಯನ್ನು ಒದಗಿಸಿರುವುದಿಲ್ಲ ಎಂದರು. ತಾವು ಕೋಲಾರ ಜಿಲ್ಲೆಯ ನಾಗರೀಕರಾಗಿದ್ದು ಇಲ್ಲಿ ಮನೆಕಟ್ಟುವ ಉದ್ದೇಶದಿಂದ ಜಾಗವನ್ನು ತೆಗೆದುಕೊಂಡಿದ್ದು ಕಳೆದ 8 ವರ್ಷಗಳಿಂದ ರಸ್ತೆ ಯೋಜನೆಯು ಕಾರ್ಯಗತವಾಗದೆ ಇರುವುದರಿಂದ ಮನೆಯನ್ನು ಕಟ್ಟಲೂ ಆಗದೆ ಬಿಡಲೂ ಆಗದೆ ಇರುವಂತಹ ಪರಿಸ್ಥಿತಿ ಎದುರಾಗಿದೆ ಎಂದು ಕಳವಳ ವ್ಯಕ್ತಪಡಿಸರು. ಯೋಜನೆಯ ಪ್ರಗತಿಯ ಬಗ್ಗೆ ಯಾವುದೇ ರೀತಿಯ ಲಿಖತ ಮಾಹಿತಿ ತಮಗೆ ದೂರೆಯುತ್ತಿಲ್ಲದ ಕಾರಣ ಸದರಿ ಯೋಜನೆಯು ಕಾರ್ಯ ರೂಪಕ್ಕೆ ಬರುತ್ತದೆಯೋ ಇಲ್ಲವೂ ಎನ್ನುವುದು ತಿಳಿದು ಬರುತ್ತಿಲ್ಲ ಇದರಿಂದ ನಮ್ಮ ಕನಸುಗಳು ನಾಶವಾಗಿದೆ ಎಂದು ದುಃಖಿಸಿದರು.

14. ಶ್ರೀ. ಮಂಜುನಾಥ, ರಾಮಪುರ ಗ್ರಾಮ:

ಇವರು ಈ ರಸ್ತೆ ಯೋಜನೆಯ ಬಗ್ಗೆ ಒಲವನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ ಈ ರೀತಿಯ ಯೋಜನೆಯನ್ನು ಯಾವುದೇ ಸ್ಥಳದಲ್ಲಿ ಹಮ್ಮಿಕೊಂಡರು ಸಹಾ ಇಲ್ಲಿ ಆಗುವಂಥಹ ಪರಿಣಾಮ ಅಲ್ಲಿಯು ಸಹ ಆಗುವುದು ಎಂದರು. ಯೋಜನೆಯ ಪ್ರಗತಿಯು ಮಂದಗತಿಯಲ್ಲಿ ಸಾಗಿದ್ದು ಇದನ್ನು ತ್ವರಿತಗೊಳಿಸ ಬೇಕು ಅಥವಾ ಕೈಬಿಡಬೇಕು ಎಂದು ಹೇಳಿದರು.

15. ಶ್ರೀ. ವೇಣು. ರಾಮಮರ:

ಸದರಿಯವರು ಭೂಸ್ವಾಧಿನ ಪಡಿಸಿಕೊಂಡು 8 ವರ್ಷಗಳಾಗಿವೆ ಇವರೆಗೆ ಯಾವ ಕಾಮಗಾರಿಯೂ ನಡೆದಿಲ್ಲ ಈ ತರಹದ ದೋರಣೆತರವಲ್ಲ. ಭೂಸ್ವಾಧಿನ ಮಾಡಿಕೊಂಡ ಒಂದು ಅಥವಾ ಎರಡು ವರ್ಷಗಳ ಅವಧಿಯಲ್ಲಿ ಯೋಜನೆಯನ್ನು ಕೈಗೆತ್ತಿಕೊಂದು ಸಂಪೂರ್ಣಗೊಳಿಸಬೇಕು. ಇಲ್ಲವಾದಲ್ಲಿ ಭಾದಿತವಾಗುವುದು ಸಾಮಾನ್ಯ ಜನತೆ ಮಾತ್ರವೇ ಎಂದು ಹೇಳುತ್ತಾ ಅತಿ ಶೀಫ್ರವಾಗಿ ಯೋಜನೆಯನ್ನು ಪೂರ್ಣಗೊಳುಸಬೇಕೆಂದು ಅಧಿಕಾರಿಗಳನ್ನು ಕೋರಿದರು.

16. ಶ್ರೀಮತಿ ಜಮುನಾ, ದೊಡ್ಡಗುಬ್ಬಿ:

ಬಿ.ಡಿ.ಎ ದವರು ಸೂಕ್ತ ಸ್ಥಳಗಳಲ್ಲಿ ಯಾವ ಜಮೀನು ಮತ್ತು ಎಷ್ಟು ಭೂಸ್ವಾಧಿನಗೊಳ್ಳುತ್ತದೆ ಎಂಬ ವಿವರಗಳ್ಳು ಫಲಕಗಳನ್ನು ಪ್ರದರ್ಶಿಸುವುದರಲ್ಲಿ ವಿಫಲವಾಗಿದೆ ಎಂದರು. ಇದರಿಂದಾಗಿ ಗೊಂದಲದ ವಾತಾವರ್ಣ ನಿರ್ಮಾಣವಾಗಿದ್ದು ಕಳೆದ ಹಲವಾರು ವರ್ಷಗಳ ಹಿಂದೆಯೇ ಜಮೀನು ಖರೀದಸಿದ್ದರು ಸಹಾ ತಮ್ಮ ಕನಸಿನ ಮನೆಯನ್ನು ಸಕಾರಗೊಳಿಸಲು ಸಾಧ್ಯವಗುತ್ತಿಲ್ಲ ಎಂದು ಹೇಳಿದರು.

17. ಶ್ರೀ. ರವಿ, ಬಿಳಿಶಿವಾಲೆ ಗ್ರಾಮ:

ಇವರು ಉತ್ತಮ ರಸ್ತೆಯ ಸಂಪರ್ಕದಿಂದಾಗಿ ಆರ್ಥಿಕ ಅಭಿವೃದ್ದಿಯನ್ನು ಸಾದಿಸಬಹುದು ಈಗಾಗಿ ಉತ್ತಮ ರಸ್ತೆಗಳ ಅವಶ್ಯಕತೆ ಕಂಡುಬರುತ್ತದೆ ಎಂದು ಹೇಳಿದರು. ರಸ್ತೆಗೆಂದು ವಶಪಡಿಸಿಕೊಂಡ ಜಮೀನುಗಳ ಬದಲಾಗಿ ಆ ಜಮೀನಿನ ಮಾಲೀಕರಿಗೆ ಬೇರೆ ಕಡೆ ಜಾಗವನ್ನು ದೊರಕಿಸಿಕೊಟ್ಟಲ್ಲಿ ಭೂಸ್ವಾಧಿನ ಪ್ರಕ್ರಿಯೆಯು ಸ್ವಯಿಛೈಯಿಂದ ಆಗುತ್ತದೆ ಎಂದರು. ಮುಂದುವರೆದು ತುಂಬಾ ಬೇಗನೆ ನಗರ ಬೆಳೆಯುತ್ತಿರುವುದರಿಂದ ಈಗಾಗಲೇ ವಾಹನಗಳ ದಟ್ಟಣೆ ಅಧಿಕವಾಗಿದ್ದು ಅತಿ ಶೀಘ್ರವಾಗಿ ರಸ್ತೆ ನಿರ್ಮಾಣವಾಗಬೇಕಾಗಿದೆ, ಬೇಗ ಪರಿಹಾರ ಧನ ನೀಡಿದರೆ ಅವರವರ ಜೀವನವನ್ನು ಅವರವರು ರೂಪಿಸಿಕೊಳ್ಳುತ್ತಾರೆ ಎಂದು ತಿಳಿಸಿದರು. ಈಗ ನಿಗದಿ ಪಡಿಸಿದ ರಸ್ತೆಯ ಪಥದಲ್ಲಿ ಅಂಥಹ ದೊಡ್ಡ ಪ್ರಮಾಣದ ಮರಗಳನ್ನು ಕಡಿಯುವ ಸಂದರ್ಭ ಬರುವುದಿಲ್ಲ, ಬೇರೆ ಎಲ್ಲೇ ಹೋದರು ಸಹ ಸಣ್ಣ ಹುಟ್ಟ ಮರಗಳನ್ನು ಕತ್ತರಿಸಲೇಬೇಕಾಗುವ ಪ್ರಮೇಯ ಬರುತ್ತದೆ ಎಂದು ಹೇಳುತ್ತಾ ರಸ್ತೆ ಅಭಿವೃದ್ಧಿಯ ಕಾಮಗಾರಿಯನ್ನು ಬೇಗನೆ ಆರಂಭಿಸಲು ಯಾವುದೇ ರೀತಿಯ ಆಕ್ಷೇಪಣೆಯನ್ನು ಮಾಡಬೇಡಿ ಎಂದು ನೆರೆದಿದ್ದವರನ್ನು ಉದ್ದೇಶಿಸಿ ವಿನಂತಿಸಿದರು.

ಅಧಿಕಾರಿ ವರ್ಗದವರಿಂದ ಮಾರುತ್ತರ:

ಶ್ರೀ. ರವಿ, ಕಾರ್ಯ ನಿರ್ವಾಹಕ ಅಭಿಯಂತರ, ಪಿ.ಆರ್.ಆರ್. ವಿಭಾಗ, ಬೆಂಗಳೂರು ನಗರ ಅಭಿವೃದ್ಧಿ ಪ್ರಾದಿಕಾರ:

ಸಭೆಯನ್ನು ಉದ್ದೇಶಿಸಿ ಮಾತನಡಿದ ಇವರು ಇಲ್ಲಿ ನಡೆದರತಕ್ಕಂತಹ ಸಭೆಯು ಪರಿಸರದ ಬಗ್ಗೆಯಾಗಿದೆ ಆದರೆ ಇಲ್ಲಿ ಹೆಚ್ಚಿನ ಅಹವಾಲುಗಳು ಭೂಮಿಯ ಪರಿಹಾರದ ಬಗ್ಗೆ ನಡೆದಿರುತ್ತದೆ, ಇಲ್ಲಿ ಪರಿಸರದ ಬಗ್ಗೆ ತಮ್ಮ ಅಹವಾಲುಗಳನ್ನು ವ್ಯಕ್ತಪಡಿಸಲು ಈ ಸಭೆಯನ್ನು ಆಯೋಜಿಸಿದ್ದೇವೆ, ಭೂಸ್ವಾಧೀನದ ಬಗ್ಗೆ ಜನವರಿ 29ನೇ ತಾರೀಖು ನಡೆದ ಸಭೆಯಲ್ಲಿ ರೈತ ಮುಖಂಡರು ಮತ್ತು ಜಮೀನಧಾರರು ಎಲ್ಲಾ ಹಳ್ಳಿಯಿಂದ ಬಂದಿದ್ದು ಅವರಿಗೆ ಭೂಸ್ವಾದಧೀನದ ಪ್ರಕ್ರಿಯೆಯ ಬಗ್ಗೆ ವಿವರವಾಗಿ ತಿಳಿಸಿದ್ದು ಬೆಂಗಳೂರು ಪ್ರಾಧಿಕಾರದ ಆಯುಕ್ತರು ಜನರಿಗೆ ಕೆಲವೊಂದು ಆಶ್ವಾಸನೆಯನ್ನು ನೀಡಿರುತ್ತಾರೆಂದು ತಿಳಿಸಿದರು. ಯಾವ ರೀತಿಯಿಂದ ಪರಿಹಾರವನ್ನು ನೀಡಬೇಕೆಂದು ಸರ್ಕಾರದ ಜೊತೆ ಮಾತನಾಡಿ ಆದಷ್ಟು ಬೇಗ ಅದನ್ನು ಸರಿಯಾದ ರೀತಿಯಲ್ಲಿ ಕಾರ್ಯರೂಪಕ್ಕೆ ತರಲ್ಲಿದ್ದೇವೆ ಎಂದರು. ಭೂಸ್ವಾಧೀನ ಪ್ರಕ್ರಿಯೆಯ ಬಗ್ಗೆ ತಿಳುವಳಿಕೆಯನ್ನು ಪಡೆಯಲು ಸಂಬಂಧ ಪಟ್ಟ ಭೂಸ್ವಾಧೀನ ಅಧಿಕಾರಿಗಳಲ್ಲಿ ಚರ್ಚಿಸಿ ಸೂಕ್ತ ಪರಿಹಾರ ನೀಡಲಾಗುವುದು ಎಂದರು. ಪರಿಸರ ಆಘಾತ ಅಧ್ಯಯನ ವರದಿಯಲ್ಲಿ 2010 ರಿಂದ 2014 ರವರೆಗೆ ಮಾಹಿತಿಯನ್ನು ಅಳವಡಿಸಿಕೊಳ್ಳಲಾಗಿದೆ ಎಂದು ತಿಳಿಸಿದರು. ಇತ್ತೀಚಿಗೆ ಮರಗಳ ವಿವರಗಳನ್ನು ಸಂಗ್ರಹಿಸಿದ್ದು ತೆಂಗಿನ ಮರ ಹಾಗೂ ನೀಲಗಿರಿ ಮರಗಳನ್ನು ಹೊರತುಪಡಿಸಿ ಸಮಾರು 500 ಮರಗಳನ್ನು ಕಡಿಯುವ ಸಂಧರ್ಭ ಎದುರಾಗಬಹುದು ಎಂದು ತಿಳಿಸಿದರು. ಒಟ್ಟು ಸುಮಾರು 6000 ಮರಗಳನ್ನು ಈ ಉದ್ದೇಶಿತ ರಸ್ತೆಯ ಪಥದಲ್ಲಿ ಕಡಿಯಬೇಕಾಗಿರುವುದರಿಂದ ಅರಣ್ಯ ಇಲಾಖೆಯ ಸಂಪರ್ಕಿಸಿ ಅವರ ಸಲಹೆಯ ಮೇರೆಗೆ ಮರಗಳನ್ನು ಕತ್ತರಿಸಲಾಗುವುದೆಂದು ತಿಳಿಸಿದರು.

ಶ್ರೀ. ನರಸಿಂಹಪ್ಪ , ವಿಶೇಷ ಭೂ ಸ್ವಾಧೀನ ಅಧಿಕಾರಿ, ಬೆಂಗಳೂರು ನಗರ ಅಭಿವೃದ್ಧಿ ಪ್ರಾದಿಕಾರ:

ಇವರು, ಪ್ರಥಮ ಅಧಿಸೂಚನೆ ಅಥವಾ ಅಂತಿಮ ಅಧಿಸೂಚನೆಯ ಗೊಂದಲವಿಲ್ಲದೆ ಮಾರುಕಟ್ಟೆ ದರವನ್ನು ಪ್ರಥಮ ಅಧಿಸೂಚನೆಯ ದಿನಾಂಕದಿಂದ ಪರಿಗಣಿಸಬೇಕೆಂದು ಹೊಸ ಭೂಕಾಯ್ದೆ ತಿಳುವಳಿಕೆ ನೀಡಿದೆ ಹಾಗೂ ಹೊಸ ನಿರ್ಧೇಶನದ ಪ್ರಕಾರ ಪರಿಹಾರ ಧನವನ್ನು ನೀಡಬೇಕಾಗಿದೆ ಹಾಗೂ ಇದು ಕಡ್ಡಾಯವಾಗಿದೆ. ತಮ್ಮ ಸಮಸ್ಯೆಗಳಿಗೆ ಸರಿಯಾದ ರೀತಿಯಿಂದ ಪರಿಹಾರ ನೀಡುವುದು ತಮ್ಮ ಆದ್ಯ ಕರ್ತವ್ಯವಾಗಿದ್ದು, ಮಾರುಕಟ್ಟೆ ದರ ಒಂದು ಹಳ್ಳಿಯಿಂದ ಇನ್ನೊಂದು ಹಳ್ಳಿಗೆ ಬದಲಾಗುತ್ತಿದ್ದು ಅದನ್ನು ಸಮಂಜಸವಾಗಿ ಪರಿಗಣಿಸಿ, ಪರಿಶೀಲಿಸಿ ಪರಿಹಾರ ನೀಡಲಾಗುವುದು ಎಂದು ತಿಳಿಸಿದರು.

ಡಾ.ಜಿ.ಸಿ. ಪ್ರಕಾಶ್,ಭಾ.ಆ.ಸೇ. ಜಿಲ್ಲಾಧಿಕಾರಿ, ಬೆಂಗಳೂರು ನಗರ ಜಿಲ್ಲೆ:

ಸಭೆಯಲ್ಲಿ ವ್ಯಕ್ತವಾದ ಅನಿಸಿಕೆಗಳು, ಸಲಹೆಗಳು, ಅಹವಾಲು ಮುಂತಾದವುಗಳನ್ನು ರಾಜ್ಯ ಪರಿಸರ ಆಘಾತ ಅಂದಾಜಿಕರಣ ಪ್ರಾಧಿಕಾರಕ್ಕೆ ಕಳುಹಿಸಿಕೊಡಲು ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿಗೆ ಕಳುಹಿಸಿಲಾಗುವುದು ಎಂದು ತಿಳಿಸುತ್ತಾ ನರೆದಿದ್ದ ಸಬಿಕರಿಗೆ ವಂದನೆಗಳನ್ನು ಸಲ್ಲಿಸಿ ಸಭೆಯನ್ನು ಮುಕ್ತಾಯಗೊಳಿಸಿದರು.

91 ಡಾ.ಜೆ.ಸಿ.ಪ್ರಕಾಶ್, ಭಾ.ಆ.ಸೇ in

ಜಿಲ್ಲಾಧಕಾರಿ, ಬೆಂಗಳೂರು ನಗರ ಜಿಲ್ಲೆ ಕರ್ನಾಟಕ ಸರ್ಕಾರ

ಅನುಬಂಧ-1

ಹಾಜರಿದ್ದ ಅಧಿಕಾರಿಗಳು :

- 1. ಶ್ರೀ. ರಮೇಶ್, ಉಪ ಪರಿಸರ ಅಧಿಕಾರಿ, ಕಾ.ರಾ.ಮಾನಿ.ಮಂ, ಬೆಂಗಳೂರು ಮಹದೇವಮರ.
- 2. ಶ್ರೀ. ಡಾ ಖಟ್ಟರಾಜು, ಸಹಾಯಕ ಪರಿಸರ ಅಧಿಕಾರಿ , ಕಾ.ರಾ.ಮಾನಿ.ಮಂ, ಬೆಂಗಳೂರು ಮಹದೇವಪುರ.

ಅನುಬಂಧ-2

ಯೋಜನೆಯ ಪ್ರವರ್ತಕರು ಹಾಗೂ ಅವರ ಸಮಾಲೋಚಕರ ಪಟ್ಟಿ:

- 1. ಶ್ರೀ. ಪಿ.ಎನ್. ನಾಯಕ್, ಅಭಿಯಂತರ ಸದಸ್ಯರು.
- 2. ಶ್ರೀ. ರವೀಂದ್ರ, ಅಭಿಯಂತರ ಅಧಿಕಾರಿ.
- 3. ಶ್ರೀ. ರವಿ, ಕಾರ್ಯ ನಿರ್ವಾಹಕ ಅಭಿಯಂತರ.
- 4. ಶ್ರೀ. ಕಾಂತರಾಜು, ಸಹಾಯಕ ಕಾರ್ಯ ನಿರ್ವಾಹಕ ಅಭಿಯಂತರ.
- 5. ಶ್ರೀ. ಮರಿಯಪ್ಪ, ಸಹಾಯಕ ಅಭಿಯಂತರ.
- 6. ಶ್ರೀ. ಅಜಿತ್, ಸಹಾಯಕ ಅಭಿಯಂತರ.
- 7. ಶ್ರೀ. ನರಸಿಂಹಪ್ಪ, ವಿಶೇಷ ಭೂ ಸ್ವಾಧೀನ ಅಧಿಕಾರಿ.
- 8. ಶ್ರೀ. ಹೇಮಂತ್ ರಾಜ್ ಕುಮಾರ್, ರಾಮ್ಕಿ ಎನ್ವಿರಾನ್ಮೆಂಟಲ್ ಇಂಜಿನಿಯರ್ಸ್, ಲಿಮಿಟೆಡ್.
- 9. ಶ್ರೀ. ಗಿರೀಶ್, ರಾಮ್ಕಿ ಎನ್ವಿರಾನ್ಮೆಂಟಲ್ ಇಂಜಿನಿಯರ್ಸ್, ಲಿಮಿಟೆಡ್.
- 10. ಶ್ರೀಮತಿ/ಕುಮಾರಿ. ಶುಷ್ಮಾ, ರಾಮ್ಕಿ ಎನ್ವಿರಾನ್ಮೆಂಟಲ್ ಇಂಜಿನಿಯರ್ಸ್ ಲಿಮಿಟೆಡ್.

ಅನುಬಂಧ-3

ಸಭೆಯಲ್ಲಿ ಹಾಜರಿದ್ದ ಸಾರ್ವಜನಿಕರ, ಆಸಕ್ತರು ಇವರ ಪಟ್ಟಿಯ ಪೋಟೂ ನಕಲನ್ನು ಇದರೊಂದಿಗೆ ಲಗತ್ತಿಸಿದೆ.

<u>Proceedings of the Environmental Public Hearing held on 06.02.2014 at 11.00 am in</u> <u>Connection with the Proposed 8 Lane Peripheral Ring Road Development (Phase-I)</u> <u>Project which Starts from Chainage 0.00 km to Chainage 64.5 (65) km Connecting</u> <u>Tumkur Road with Hosur Road Through Old Madras Road.</u>

Place of Environmental Public Hearing	Bilishivale Village, Bidarahalli Hobli Bangalore East Taluk, Bangalore.	
Environmental Public Hearing	Panel Members Present	
 Dr. G.C. Prakash IAS Deputy Commissioner Bangalore Urban Dist Bangalore Government of Karnataka. 	Chairperson	
 Sri.M.K.Prabhu dev Senior Environmental Officer Karnataka State Pollution Control Board Bangalore East Region Bangalore. 	Representative of KSPCB	
 Sri. Shanmukhappa, Environmental Officer Karnataka State Pollution Control Board Regional Office Bangalore Mahadevapura Bangalore. 	Convener	
Officers & Othe	ers Present	
List of Officers	Annexure - I	
List of Project Proponents & their Consultants	Annexure - II	
List of Participants	Annexure - III	

Preamble:

The Bangalore Development Authority (BDA) has proposed to develop an 8 Lane Peripheral Ring Road (Phase – I). The project envisages formation of 65 km long Peripheral Ring Road (PRR) consisting of 8 lanes starting from Tumkur (Chainage 0.0 km) Road and ending at Hosur Road (Near Begur at Chainage 64.65 km) connecting Balavakere, Hesarghatta, Yelahanka, Bettahalasuru, Thanisandra, Bhagaluru, Avalahalli, Sadaramangala, Whitefield, Varthur, Dhommasndra and Electronic City.

The BDA Authorities have applied for Environmental Clearance from the Ministry of Forests and Environment, Government of India, as per the Environmental Impact Assessment (EIA) Notification, 2006. Accordingly the State Environmental Impact Assessment Authority (SEIAA), Karnataka, has issued Terms of Reference (ToR) dated 18.12.2009 and requested the Karnataka State Pollution Control Board to conduct Environmental Public Consultation / Public Hearing as per the EIA Notification, 2006 and submit the minutes of the meeting.

As per the guidelines stipulated in the EIA Notification, the KSPCB has initiated action and has arranged this Public Hearing / Consultation Meeting. The KSPCB has issued paper notification on 06.01.2014 in leading news papers viz., Deccan Herald (English), Vijaya Karnataka (Kannada) for wide publicity. Draft EIA report was kept in Local Gram Panchayath Offices viz., Shigehalli, Kadugodi, Chikkajala, Hesaraghatta, Bidarehalli, Avalahalli, Kannur and Doddabanaahalli.

As per the EIA Notification, 2006, the Public Hearing was conducted at Bilishivale, Bidarahalli Hobli, Bangalore on 06.02.2014 at 11.00 AM under the Chairmanship of Dr. Prakash IAS, Deputy Commissioner, Bangalore Urban District. The representative of the KSPCB, Sri. M.K. Prabhudev, Regional Senior Environmental Officer, Bangalore East Region, initiated the Public Hearing Program by welcoming Deputy Commissioner and Chairman of Public Hearing Committee and all other representatives from different organization. He briefly explained the EIA Notification & requested the Public to express their views, suggestion, objections etc. Sri. Shanmukhappa, Environmental Officer, Sri. K.M. Ramesh, Deputy Environmental Officer, Dr. H.R. Putttaraju, Assistant Environmental Officer, KSPCB, Regional Office Mahadevapura, Bangalore, have assisted in conducting the meeting. Prior to and during the meeting 12 numbers of communications were received and are as follows:

ಕ್ರಮ ಸಂಖ್ಯೆ.	ಹೆಸರು ಮತ್ತು ವಿಳಾಸ	ಕ.ರಾ.ಮಾ.ನಿ.ಮಂ, ಕೇಂದ್ರ ಕಛೇರಿಯಲ್ಲಿ ಸ್ವೀಕರಿಸಿದ ದಿನಾಂಕ	ಕ.ರಾ.ಮಾ.ನಿ.ಮಂ, ಪ್ರಾದೇಶಿಕ ಕಛೇರಿ ಮಹದೇವಪುರದಲ್ಲಿ ಸ್ವೀಕರಿಸಿದ ದಿನಾಂಕ	ವಿಷಯ
1	ಶ್ರೀಮತಿ. ರೀನಾ ಮಹೆಂದ್ರ, ಆವಲಹಳ್ಳಿ ಎಸ್ಟೇಟ್ ಯಲಹಂಕ ಪೋಸ್ಟ್, ಬೆಂಗಳೂರು-560064	09-01-2014	24-01-2014	ಸಾರ್ವಜನಿಕ ಸಭೆಯನ್ನು ನಾಲ್ಕು ವಲಯಗಳಲ್ಲಿ ಪ್ರತ್ಯೇಕ ದಿನಗಳಲ್ಲಿ ನಾಲ್ಕು ಕಡೆ ಸಭೆ ನಡೆಸಲು ಮನವಿ.
2	ಪಿಆರ್ಆರ್-1, ತೊಂದರೆಒಳಗಾದ ನಿವಾಸಿಗಳ ಹಿತರಕ್ಷಣಾ ಸಮಿತಿ, ನಂ. 108, ನಾಗಾನಂದ ನಿಲಯ, ವಿಶ್ವ ಪ್ರಕೃತಿ ಲೇಔಟ್, ಮಾರುತಿನಗರ, ೨ನೇ ಹಂತ, ಯಲಹಂಕ, ಬೆಂಗಳೂರು-560064	15-01-2014	24-01-2014	ಪರಿಸರ ಆಘಾತ ಅಧ್ಯಯನ ವರದಿಯಲ್ಲಿ ಎಷ್ಟು ಮರಗಳು ಹಾಳಗುತ್ತವೆ ಎಂಬುದರ ಬಗ್ಗೆ ಮಾಹಿತಿ ಇರುವುದಿಲ್ಲ ಹಾಗೂ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ಪರಿಸರದ ಹಾನಿಯಾಗುತ್ತದೆ ಹಾಗೂ ಹಲವಾರು ಕೆರೆಗಳು, ಅರಣ್ಯ ಪ್ರಧೇಶಗಳು, ದೇವಸ್ಥಾನಗಳು, ಚರ್ಚಗಳು, ಸ್ಮಶಾನಗಳು, ಮುಖ್ಯ ರಸ್ತೆಯಲ್ಲಿ ಸಿಲುಕಿರುತ್ತವೆ. ೭೫ ಮೀಟರ್ ರಸ್ತೆಯ ಅಗಲದ ಮಾರ್ಗಕ್ಕೆ ಡಿ.ಪಿ.ಆರ್ ಮತ್ತು ಫಿಸಿಬಲಿಟಿ ರಿಪೋರ್ಟನ್ನು ಕ್ರೂಡಿಕರಿಸಿರುವುದಿಲ್ಲ.
3	ಶ್ರೀ. ಮಹೇಂಧ್ರ ಆರ್. ಆವಲಹಳ್ಳಿ ಎಸ್ಟೇಟ್ ಯಲಹಂಕ ಪೋಸ್ಟ್, ಬೆಂಗಳೂರು-560064	27-01-2014	04-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ರಾಂಗ್ ರಸ್ತೆ ಡಿ.ಪಿ.ಆರ್ ಮಾಡಿರುವುದಿಲ್ಲ ಮತ್ತು ಪರಿಸರ ಅಘಾತ ಅನ್ವಯ ಅಧಿಸೂಚನೆ ಉಲ್ಲಂಘನೆಯಾಗುತ್ತಿರುವ ಬಗ್ಗೆ
4	ಶ್ರೀ. ಸಿ. ಕಾಮನಿ ನಂ.35, ಕಿಂಗ್ ಸ್ಟ್ ನ್ ಟವರ್ಸ್ಸ್ 6&7, ಕಿಂಗ್ಸ್ಟನ್ ರಸ್ತೆ, ಅಲಸೂರ್ ಕೆರೆ, ಬೆಂಗಳೂರು-560042	27-01-2014	04-02-2014	ಪರಿಸರ ಆಘಾತ ಅಧ್ಯಯನ ವರದಿಯನ್ನು ಮಾಡಿರುವ ರ್ಯಾಮ್ಕಿ ಸಂಸ್ಥೆ, ಇವರು ನಡೆಸುತ್ತಿರುವ ಘನ ತ್ಯಾಜ್ಯ ವಸ್ತುಗಳ ವಿಲೇವಾರಿಯನ್ನು ಮಾವಳ್ಳಿಮರ ಬೆಂಗಳೂರು ಇಲ್ಲಿ ನಡೆಸುತ್ತಿದ್ದು ಇದರ ವಿರುದ್ದ ಈಗಾಗಲೇ ಅವರ ಮೇಲೆ ಘನ ತ್ಯಾಜ್ಯ ವಸ್ತುಗಳನ್ನು ವಿಲೇವಾರಿ ಮಾಡದಿದ್ದರಿಂದ ಮಾನ್ಯ ಉಚ್ಚ ನ್ಯಾಯಾದಲ್ಲಿ ಕೇಸು ನಡೆಯುತ್ತಿದ್ದು ಪರಿಸರ ಆಘಾತ ವರದಿಯನ್ನು ನಂಬುದಕ್ಕೆ ಅರ್ಹರಿರುವುದಿಲ್ಲ.
5	ಗ್ರಾಮಸ್ಥರು , ವೆಂಕಟಾಲ, ಕೊಟಿಗೇನ ಹಳ್ಳಿ, ಕೋಗಿಲು ಗ್ರಾಸ್ಥರು, ಬೆಂಗಳೂರು	27-01-2014	04-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ವಾಹನಗಳು ಅತಿವೇಗವಾಗಿ ಚಲಿಸುತ್ತವೆ, ಅದರಿಂದ ದೋಳಿನ ಅಂಶಗಳು ಉತ್ಪತ್ತಿಯಾಗುತ್ತದೆ ಮತ್ತು ಗದ್ದಲದ ವತಾವರಣವು

Photo Copies of the same are enclosed vide Annexure-VI.

				ಕಲುಶಿತವಾಗಿ ಹಾನಿಯಾಗಿ ಬಡಾವಣೆಗಳಲ್ಲಿ ವಾಸಿಸುವ ಸಾರ್ವಜಿನಿಕರಿಗೆ ತೊಂದರೆಯಾಗುತ್ತದೆ.
6	ಹೆಸರು ಮತ್ತು ವಿಳಾಸ ಇಲ್ಲದ ಅರ್ಜಿ ಬೆಂಗಳೂರು	14-01-2014	04-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ರಾಂಗ್ ರಸ್ತೆಯಿಂದ ಪರಿಸರ ಮಾಲಿನ್ಯದ ಬಗ್ಗೆ ಹಾಗೂ ಕೇಸುಗಳು ನಡೆಯುತ್ತಿರುವ ಬಗ್ಗೆ
7	ಎ. ಬಾರ್ ಟಿಯ, ಬಾರತಿ ಫಾರಂ, ರಾಮಗೊಂಡನಹಳ್ಳಿ, ಯಲಹಂಕ ಹೋಬಳಿ, ಬೆಂಗಳೂರು.	27-01-2014	05-02-2014	1 ಕಿ.ಮೀ. ಗೆ ಬೇಕಾಗುವ ನೀರಿನ ಬಳಕೆಯ ಬಗ್ಗೆ ಹಾಗೂ ಯಾವ ಮೂಲದಿಂದ ನೀರನ್ನು ಬಳಸುತ್ತಾರೆ.
8	ಸುದಾಕರ್ ಹೆಗ್ಗಡೆ, ನಂ. 948, 6ನೇ ಕಾಸ್, ಆಶಾ ಟೌನ್ ಶಿಫ್, ದೊಡ್ಡಗುಬ್ಬಿ ಪೋಸ್ಟ್, ಬೆಂಗಳೂರು.	01-02-2014	05-02-2014	ಪೆಟ್ರೋನೆಟ್ ಎಮ್ ಬಿ ಹೆಚ್ ಲಿ., ನವರು ಪೆಟ್ರೋಲಿಯಂ ಪೈಪ್ ಲೈನ್ನು ಬಿಳಿಶಿವಾಲೆ, ರಾಂಪುರ ಅಡೂರು ಮುಂತಾದ ಸ್ಥಳಗಳಲ್ಲಿ ಹಾದು ಹೋಗಿದ್ದು ಈ ಪ್ರೋಜೆಕ್ಟ್ ನಿಂದ ಪೆಟ್ರೋಲಿಯಂ ಪೈಪ್ ಹೊಡೆದು ಡಿಸ್ ಆಸ್ಟರ್ ಸಾದ್ಯತೆ ಹೆಚ್ಚುರುತ್ತದೆಂದು ಮನವಿ ಸಲ್ಲಿಸಿರುತ್ತಾರೆ.
9	ಸಿದ್ದಪ್ಪ , ಬಿಳಿಶಿವಾಲೆ, 1ನೇ ಮಹಡಿ, ಕುರುಬರ ಸಂಘ, 2ನೇ ಮುಖ್ಯ ರಸ್ತೆ, ಗಾಂದಿನಗರ ಬೆಂಗಳೂರು.	03-02-2014	05-02-2014	ಸದರಿ ಪ್ರೋಜೆಕ್ಟ್ ನಿಂದ ತಪ್ಪಗೊಂಡನಹಳ್ಳಿ ಜಲಾಶಯದ ಹಾಗೂ ಸದರಿ ಸ್ಥಳಗಳಲ್ಲಿರುವ ಕೆರೆಗಳ ಮೇಲೆ ದುಷ್ಪರಿಣಾಮ ಬೀರುತ್ತದೆ ಹಾಗೂ ಮರಗಳನ್ನು ಕಡಿಯುವುದರಿಂದ ಪರಿಸರದಲ್ಲಿ ಬದಲಾಗುವ ಸಾದ್ಯತೆ ಇರುತ್ತದೆ.
10	ಡಿ.ಎಂ. ದ್ವಾರಕಯ್ಯ, ನಂ.222, 1ನೇ ಮಹಡಿ, 4ನೇ ಕ್ರಾಸ್, (ಸಿ.ಎಂ.ಆರ್) ಕಲ್ಯಾಣನಗರ, ಬೆಂಗಳೂರು-560043.	ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಆಲಿಕೆ ಸಭೆಯಲ್ಲಿ ನೀಡಿರುವುದು	06-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ಪರಿಸರ ಮಾಲಿನ್ಯದ ಬಗ್ಗೆ ಹಾಗೂ ಕೇಸುಗಳು ನಡೆಯುತ್ತಿರುವ ಬಗ್ಗೆ
11	ವಿ. ಸುರೇಶ್, ಸ/ಆಪ್ ಲೇಟ್ ಶ್ರೀ ವೆಂಕಟಸ್ವಾಮಿ ರೆಡ್ಡಿ ಮತ್ತು ಇತರರು, ಸೋರಹುಣಸೆ ವಿಲೇಜ್, ವರ್ತೂರು ಪೋಸ್ಟ್, ಬೆಂಗಳೂರು- 560087.	ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಆಲಿಕ ಸಭೆಯಲ್ಲಿ ನೀಡಿರುವುದು	06-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯಿಂದ ಪರಿಸರ ಮಾಲಿನ್ಯದ ಬಗ್ಗೆ ಹಾಗೂ ಕೇಸುಗಳು ನಡೆಯುತ್ತಿರುವ ಬಗ್ಗೆ.
12	ಚೆರಿಯನ್ ಸೆಬಾಸಟೈನ್, ನೆಲಮಹಡಿ, ನಂ. 74, 1ನೇ ಅಡ್ಡ ರಸ್ತೆ, ತ್ಯಾಗರಾಜ ಲೇಔಟ್, ಜೈ ಭಾರತ್ ನಗರ, ಬಾನಸವಾಡಿ ರೋಡ್, ಬೆಂಗಳೂರು-560033.	ಪರಿಸರ ಸಾರ್ವಜನಿಕ ಆಲಿಕೆ ಸಭೆಯಲ್ಲಿ ನೀಡಿರುವುದು	06-02-2014	ಉದ್ದೇಶಿತ ಫೆರಿಫರಲ್ ರಿಂಗ್ ರಸ್ತೆಯನ್ನು 10 ರಿಂದ 15 ಕಿ.ಮೀ. ದೂರಕ್ಕೆ ಸ್ಥಳಾಂತರಿಸುವ ಬಗ್ಗೆ .

On behalf of BDA, Sri. Hemanth Rajkumar, representing M/s. Ramky Enviro Engineers Limited, Bangalore, explained the public and officials regarding PRR project, its alignment & significance, through power point presentation. Salient feature of the project presented is as given below.

- o Total Length of PRR 65 km (Phase I).
- o Cost of the project 930 Crores.
- Consists 8 Lane with single Lane width of 3.5 m.
- o Area Coverage 975 acres (15 Acres per km).
- o Connects Tumkur Road with Hosur Road passing through Old Madras Road.
- o Intersects at Hessarghatta Road, Doddaballapur, Bellary Road & Hennur Road.
- o Water requirement for road formation 3.5 MLD.
- o Requisite Water Pollution, Air Pollution Control measures to be adopted.

After presentation, the Deputy Commissioner requested the public gathered in the meeting to submit their representations, objections / grievances / advices related to the environmental issues in connection with the PRR Development. Suggestions, views, objections, expressed by the gathered public are summarized below:

1. Sri. Satya Babu, Harohalli Village Yelahanka Hobli:

He said that there is no proper information regarding compensation to be paid in respect of acquired land or building. He also stated that this project was initiated in 2005 and thereafter no meeting, discussion or information are provided by the BDA. He also questioned the BDA that how many more years are required to complete the project. He has said pollution level in the area increases due to formation of Proposed Peripheral Ring Road as it leads to increase of vehicular movement on the road and requested to change the alignment of the proposed road.

2. Sri. Pawan, Bilishivale:

He requested the BDA authorities to clarify on the compensation to be paid for the land aligned as the BDA has changed the alignment. Further due to change in the alignment of PRR frequently, their lands are not converted for any other activity.

3. Sri. Suresh, Soraunse Village:

He said that it has been informed that approximately 200 trees will be cut, however in his 2.5 acres orchard there are about 30 Sapota Plants and 60 Coconut Trees, what is the basis that 200 plants have been estimated to be cut. He has further said that they are earning their livelihood by way of practicing sericulture and horticulture. Development of the road would deprive them of their livelihood along with increase in air and noise pollution. Since he feels that road project does not create any new job opportunities, and hence the project should be dropped.

4. Sri. Shyam, Bilishivale:

He requested to clarify on the alignment of the road and also requested to clarify on the villages along with Sy Numbers that will not be affected by this PRR from Hennur Road.

5. Sri. Mahesh, Bilishivale:

He said that it's a good objective that the road development is taken up which does not pose any threat to their village, but instead it will result in economic development and alleviation of many problems. Construction of road is paramount for development of city of Bangalore, as such, he requested everybody to support the project and requested for suitable compensation.

6. Sri Rajan Venkatala, Yelahanka:

He expressed that the EIA report which was prepared during 2010 (3-4 years back) has no credibility. He sought clarification on the allotment of land for construction of house to those who loose their entire land for road work. He expressed his deep concern that the alignment has changed 3-4 time in order to suit certain class of society and rich people. He said the road alignment blue prints are improper and BDA is not coming up with suitable convincing reply, hence the whole proposal does not seem to be in order. So he as requested to drop the project in present location and take up the same outside BBMP limit. He further quipped not to take up the project until the court cases filed by many land lords (Through whose land present road alignment is take up) are disposed off.

7. Sri Ashok, Bilishivale:

He has requested to drop the project as the distance between old ring road and the proposed road is only 6 km. He suggested realigning the road keeping 10 - 15 km distance between the present and the proposed roads.

8. Sri Anand Kumar, Bilishivale:

He has requested to take up the project as soon as possible which just has been in discussions from many years with time bound schedule.

9. Sri Ramaswamy, Kyalasanahalli:

He sought information on beginning and ending of this road alignment along with details of villages and survey numbers it encompasses.

10. Sri Cherian, Cocks town, Bangalore:

He stated that proposed peripheral ring road first phase was approved in 1995 CDP and BDA has dropped this project during 2004 owing to fast paced development of Bangalore. Subsequently in CDP, Inspection Report of September 2007 and as per draft feasibility report, proposed road development is at the distance of 5km from the existing ring road. Further, M/s. Stup Consultant have submitted the report that distance between present and proposed roads shall be 10-15 km keeping rapid growth of Bangalore city and from the point of view of pollution control, he said. So he has requested to realign the road keeping aforesaid and growth of Bangalore.

11. Smt. Rina Mahendra, Avalahalli:

She said that this public hearing is organized for discussion of environment related issues only in respect of the proposed road and urged to discuss only such issues. She requested BDA to organize separate meeting to discuss other issues including compensation.

She also questioned that EIA report was prepared in 2010 and already three years have elapsed and whether this report can be considered. She also pointed out that the EIA report is silent on whether the road alignment passes through Thipagondanhalli Reservoir Catchment Area, existing Gas Pipeline and Forest Area.

12. Sri Prabhakar, Agrahara, Yelahanka:

He said that first survey has been done during 2006 and redone 4-5 times subsequently leading to change in the alignments due to which they are in fear of losing the house. So he has requested to shelve the project.

13. Sri Sukumar, Kothanur, Dhodda Gubbi:

He thanked for having organized environmental public hearing which he said would provide them a good opportunity to express their grievance, indicate suggestions. The project has been inordinately delayed without giving any information to the interested and affected, he said. Further, he has told that he is from Kolar District and procured land here with intention of constructing a house which dream he is not been able to realize from the past 8 years due to impending road project. He has expressed his anxiousness about not availability of project progress in writing.

14. Sri Manjunath, Rampura Village:

He has said that he is in favor of road project development and is of the opinion that even if they shift the alignment to some other place, the same impact will be felt at that place also. He also state that the progress of the project development is very slow and it is to be speeded up or otherwise the same may be dropped.

15. Sri Venu, Rampura:

He said that no civil work has begun even though the land has been acquired 8 years ago, this is not proper, the work has to been taken up within a year or two after acquisition and work be completed. Otherwise it is common man who is at the receiving end suffers, He requested officers to execute the project and complete it at the earliest.

16. Smt. Jamuna, Dodda Gubbi:

She expressed that the BDA has failed to put up suitable boards indicating the extent and exact land for acquisition. This has created lots of confusion among people to take up construction of their own house even though they had purchased land long back. She said it is a basic dream of every person to have an own house.

17. Sri Ravi, Bilishivale:

He has said that economic development can be achieved through good connectivity of roads, therefore need of good roads appears very prominent. Therefore provide the alternative land to the land losers so that acquisition of land for development works can be consented one, he said. The project has to be taken up quickly as city is witnessing rapid growth and increase in density of vehicles. He urged to disburse the compensation at the earliest so that people do not suffer. He further said that wherever road work is taken up some amount of tree chopping will have to be encounter, in the present alignment this is at minimal, as such, he requested the public not to pose objection to the project.

Reply from Officers:

Sri Ravi, Executive Engineer, PRR Division BDA:

He said that this public hearing has been organized to discuss environmental issues however more issues related to acquisition and compensation of land is being discussed. He brought before the forum that on January 29th process related to land acquisition and has been explained in detail to the participant land lord and heads of farmers along with certain assurances by BDA commissioner. He said that land compensation issue is under discussion with Government and suitable decision will be taken and implemented. To gain more knowledge on land acquisition process, a discussion will be held with the concerned land acquisition officers to disburse suitable compensation, he said. Further, he said that this environmental impact analysis encompasses information related to the years 2010 to 2014. It is estimated that approximately

500 trees, excluding eucalyptus and coconut trees, are required to be cut during execution of project, he said. Totally about 6000 tress may have to be cut in the proposed road alignment which will be done in consultation with forest department.

Sri Narasimhappa, Special Land Acquisition Officer, BDA:

He said that as per The Right to Fair Compensation and Transparency in Land Acquisition, Rehabilitation and Resettlement Act, 2013, market rate has to be considered from the date of preliminary notification of land acquisition and there is no ambiguity such as preliminary or final notification and it is mandatory to consider the prevailing market rate. He also said that it is their prime duty to consider and disburse compensation properly as per the market rate. He added that the prevailing market rate of the land varies from village to village which will be considered while disbursing applicable compensation.

Dr.G.C. Prakash IAS, Deputy Commissioner, Bangalore Urban District:

He concluded that suggestions/opinions/requests that are expressed during the meeting will be forwarded to KSPCB for onward transmission to SEIAA as per the EIA Notification.

G.C. Prakash IAS Dr.

Deputy Commissioner Bangalore Urban District, GoK

Annexure 1

Officers Present:

- 1. Sri. K.M.Ramesh, Deputy Environmental Officer, KSPCB, RO- Bangalore Mahadevapura.
- 2. Dr.H.R.Puttaraju, Assistant Environmental Officer, KSPCB, RO- Bangalore Mahadevapura.

Annexure II

List of Project Proponents & their Consultants:

- 1. Sri. P.N. Nayak, Engineer Member.
- 2. Sri. Ravindra, Engineer Officer.
- 3. Sri. Ravi, Executive Engineer.
- 4. Sri. KanthaRaju, Asst Executive Engineer.
- 5. Sri Mariyappa, Asst Engineer.
- 6. Sri. Ajith, Asst Engineer.
- 7. Sri. Narasimhappa, Special Land Acquisition Officer.
- 8. Sri. Hemanth Rajkumar, Ramky Environmental Engineers Limited.
- 9. Sri. Girish, Ramky Environmental Engineers Limited.
- 10. Ms. Sushma, Environmental Engineers Limited.

Annexure III

8

List of Participants

Photocopy of the list is enclosed herewith.